SGLT2 inhibitors in polycystic kidney disease (PKD): current evidence and future perspectives

Authors

  • Marco Lombardi Ambulatorio Nefrolitiasi, Ospedale Santa Maria Annunziata, ASL Toscana Centro, Firenze - Italy, Ambulatorio per lo studio e la cura della Calcolosi Renale, Synlab, Firenze - Italy and SOS Nefrologia e Dialisi, Ospedale Borgo San Lorenzo, ASL Toscana Centro, Firenze - Italy https://orcid.org/0009-0000-9128-5117
  • Andrea Batazzi SOS Nefrologia e Dialisi, Ospedale Borgo San Lorenzo, ASL Toscana Centro, Firenze - Italy https://orcid.org/0009-0001-7663-3790
  • Bernardo Martini SOC Nefrologia e Dialisi Firenze-2, Ospedale Santa Maria Annunziata, ASL Toscana Centro, Firenze - Italy https://orcid.org/0009-0007-7357-4709
  • Alma Mehmetaj SOC Nefrologia e Dialisi Firenze-2, Ospedale Santa Maria Annunziata, ASL Toscana Centro, Firenze - Italy
  • Stefano Michelassi SOC Nefrologia e Dialisi Firenze-2, Ospedale Santa Maria Annunziata, ASL Toscana Centro, Firenze - Italy

DOI:

https://doi.org/10.33393/gcnd.2025.3674

Keywords:

ADPKD, Nephrolithiasis, Polycystic kidney disease, Renal protection, SGLT2 inhibitors, Tolvaptan

Abstract

Introduction: Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent hereditary nephropathy and an important cause of chronic kidney failure worldwide. Beyond tolvaptan, the only disease-modifying drug currently available, new therapies are urgently needed. Sodium-glucose cotransporter-2 inhibitors (SGLT2i) have demonstrated consistent renoprotective effects across diverse chronic kidney disease (CKD) populations, but ADPKD patients were excluded from pivotal trials.
Methods: We reviewed the rationale, preclinical data, early clinical evidence, and ongoing randomized trials
of SGLT2i in ADPKD. Particular attention was given to their potential synergism with tolvaptan and their unique
protective role against nephrolithiasis, a common complication in ADPKD. Other metabolic interventions (metformin, 2-deoxy-D-glucose, mTOR inhibitors) were also examined to underline the relevance of glucose metabolism as a therapeutic target.
Results and conclusion: SGLT2i combine robust renoprotective mechanisms, a favorable safety profile, and the
potential to reduce nephrolithiasis. For the first time, dedicated randomized trials (EMPA-PKD, DAPA-PKD, STOPPKD) are ongoing, and their findings may define a new era of combination therapy in ADPKD.

References

  1. Torres VE, Harris PC, Pirson Y. Autosomal dominant polycystic kidney disease. Lancet. 2007;369(9569):1287-1301. PMID:17434405 https://doi.org/10.1016/S0140-6736(07)60601-1 PMID:17434405 DOI: https://doi.org/10.1016/S0140-6736(07)60601-1
  2. Torres VE, Chapman AB, Devuyst O, et al; TEMPO 3:4 Trial Investigators. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2012;367(25):2407-2418. PMID:23121377 https://doi.org/10.1056/NEJMoa1205511 PMID:23121377 DOI: https://doi.org/10.1056/NEJMoa1205511
  3. Heerspink HJL, Stefánsson BV, Correa-Rotter R, et al; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383(15):1436-1446. https://doi.org/10.1056/NEJMoa2024816 PMID:32970396 DOI: https://doi.org/10.1056/NEJMoa2024816
  4. Herrington WG, Staplin N, Wanner C, et al; The EMPA-KIDNEY Collaborative Group. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2023;388(2):117-127. PMID:36331190 https://doi.org/10.1056/NEJMoa2204233 PMID:36331190 DOI: https://doi.org/10.1056/NEJMoa2204233
  5. Upadhyay A. SGLT2 Inhibitors and Kidney Protection: Mechanisms Beyond Tubuloglomerular Feedback. Kidney360. 2024;5(5):771-782. PMID:38523127 https://doi.org/10.34067/KID.0000000000000425 PMID:38523127 DOI: https://doi.org/10.34067/KID.0000000000000425
  6. Vallon V, Thomson SC. Targeting renal glucose reabsorption to treat hyperglycaemia: the pleiotropic effects of SGLT2 inhibition. Diabetologia. 2017;60(2):215-225. PMID:27878313 https://doi.org/10.1007/s00125-016-4157-3 PMID:27878313 DOI: https://doi.org/10.1007/s00125-016-4157-3
  7. Packer M. SGLT2 Inhibitors Produce Cardiorenal Benefits by Promoting Adaptive Cellular Reprogramming to Induce a State of Fasting Mimicry: A Paradigm Shift in Understanding Their Mechanism of Action. Diabetes Care. 2020;43(3):508-511. PMID:32079684 https://doi.org/10.2337/dci19-0074 PMID:32079684 DOI: https://doi.org/10.2337/dci19-0074
  8. Harmacek D, Pruijm M, Burnier M, et al. Empagliflozin Changes Urine Supersaturation by Decreasing pH and Increasing Citrate. J Am Soc Nephrol. 2022;33(6):1073-1075. PMID:35387874 https://doi.org/10.1681/ASN.2021111515 PMID:35387874 DOI: https://doi.org/10.1681/ASN.2021111515
  9. Anderegg MA, Schietzel S, Bargagli M, et al. Empagliflozin in nondiabetic individuals with calcium and uric acid kidney stones: a randomized phase 2 trial. Nat Med. 2025;31(1):286-293. https://doi.org/10.1038/s41591-024-03330-x PMID:39747681 DOI: https://doi.org/10.1038/s41591-024-03330-x
  10. Schietzel S, Bally L, Cereghetti GM, et alImpact of the SGLT2 inhibitor empagliflozin on urinary supersaturations in kidney stone formers (SWEETSTONE trial): protocol for a randomised, double-blind, placebo-controlled cross-over trial. BMJ Open 2022;12:e059073. https://doi.org/10.1136/bmjopen-2021-059073. DOI: https://doi.org/10.1136/bmjopen-2021-059073
  11. Lombardi M, Gallo P, Laudicina S, et al. SGLT2 inhibitors in the prevention of nephrolithiasis: a comprehensive review. G Clin Nefrol Dial. 2025;37(1):48-52. https://doi.org/10.33393/gcnd.2025.3541 DOI: https://doi.org/10.33393/gcnd.2025.3541
  12. Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med. 2013;19(4):488-493. PMID:23524344 https://doi.org/10.1038/nm.3092 PMID:23524344 DOI: https://doi.org/10.1038/nm.3092
  13. Boertien WE, Meijer E, Zittema D, et al. Copeptin, a surrogate marker for vasopressin, is associated with kidney function decline in subjects with autosomal dominant polycystic kidney disease. Nephrol Dial Transplant. 2012;27(11):4131-4137. PMID:22523115 https://doi.org/10.1093/ndt/gfs070 PMID:22523115 DOI: https://doi.org/10.1093/ndt/gfs070
  14. Uchiyama K, Kamano D, Nagasaka T, et al. Open-Label, Randomized, Controlled, Crossover Trial on the Effect of Dapagliflozin in Patients With ADPKD Receiving Tolvaptan. Kidney Int Rep. 2025;10(4):1063-1075. https://doi.org/10.1016/j.ekir.2025.01.023 PMID:40303212 DOI: https://doi.org/10.1016/j.ekir.2025.01.023
  15. Leonhard WN, Song X, Kanhai AA, et al. Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease. EBioMedicine. 2019;47:436-445. PMID:31473186 https://doi.org/10.1016/j.ebiom.2019.08.041 PMID:31473186 DOI: https://doi.org/10.1016/j.ebiom.2019.08.041
  16. Walz G, Budde K, Mannaa M, et al. Everolimus in patients with autosomal dominant polycystic kidney disease. N Engl J Med. 2010;363(9):830-840. https://doi.org/10.1056/NEJMoa1003491 PMID:20581392 DOI: https://doi.org/10.1056/NEJMoa1003491
  17. Perrone RD, Abebe KZ, Watnick TJ, et al. Primary results of the randomized trial of metformin administration in polycystic kidney disease (TAME PKD). Kidney Int. 2021;100(3):684-696. PMID:34186056 https://doi.org/10.1016/j.kint.2021.06.013 PMID:34186056 DOI: https://doi.org/10.1016/j.kint.2021.06.013
  18. Morioka F, Nakatani S, Uedono H, Tsuda A, Mori K, Emoto M. Short-Term Dapagliflozin Administration in Autosomal Dominant Polycystic Kidney Disease-A Retrospective Single-Arm Case Series Study. J Clin Med. 2023;12(19):6341. PMID:37834985 https://doi.org/10.3390/jcm12196341 PMID:37834985 DOI: https://doi.org/10.3390/jcm12196341
  19. Minatoguchi S, Hayashi H, Umeda R, Koide S, Hasegawa M, Tsuboi N. Additional renoprotective effect of the SGLT2 inhibitor dapagliflozin in a patient with ADPKD receiving tolvaptan treatment. CEN Case Rep. 2024;13(5):419-424. PMID:38494546 https://doi.org/10.1007/s13730-024-00859-1 PMID:38494546 DOI: https://doi.org/10.1007/s13730-024-00859-1
  20. Yoshimoto M, Sekine A, Suwabe T, et al. Dapagliflozin treatment in patients with chronic kidney disease associated with autosomal dominant polycystic kidney disease. Clin Kidney J. 2024;17(8):sfae186. PMID:39099568 https://doi.org/10.1093/ckj/sfae186 PMID:39099568 DOI: https://doi.org/10.1093/ckj/sfae186
  21. Müller RU, Guerrot D, Chonchol M, et al. SGLT2 inhibition for patients with ADPKD - closing the evidence gap. Nephrol Dial Transplant. 2025;gfaf061 https://doi.org/10.1093/ndt/gfaf061 PMID:40199734 DOI: https://doi.org/10.1093/ndt/gfaf061
  22. Bahlmann-Kroll E, Häckl S, Kramer S, et al. Empagliflozin in patients with autosomal dominant polycystic kidney disease (EMPA-PKD): study protocol for a randomised controlled trial. BMJ Open. 2024;14(12):e088317. PMID:39675824 https://doi.org/10.1136/bmjopen-2024-088317 PMID:39675824 DOI: https://doi.org/10.1136/bmjopen-2024-088317
  23. ClinicalTrials.gov. Feasibility of Study of Empagliflozin in Patients With Autosomal Dominant Polycystic Kidney Disease (NCT05510115). Bethesda (MD): National Library of Medicine. Online https://clinicaltrials.gov/study/NCT05510115 (Accessed October 2025)
  24. ClinicalTrials.gov. Empagliflozin in ADPKD (EMPA-PKD, Germany) – NCT06391450. Bethesda (MD): National Library of Medicine. Online https://clinicaltrials.gov/study/NCT06391450 (Accessed October 2025)
  25. ClinicalTrials.gov. Short-term effects of an SGLT2 inhibitor on divalent ions in ADPKD (NCT06435858). Bethesda (MD): National Library of Medicine. Online https://clinicaltrials.gov/study/NCT06435858 (Accessed October 2025)
  26. Zinman B, Wanner C, Lachin JM, et al; EMPA-REG OUTCOME Investigators. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117-2128. https://doi.org/10.1056/NEJMoa1504720 PMID:26378978 DOI: https://doi.org/10.1056/NEJMoa1504720
  27. Torres VE, Ahn C, Barten TRM, et al. KDIGO 2025 clinical practice guideline for the evaluation, management, and treatment of autosomal dominant polycystic kidney disease (ADPKD): executive summary. Kidney Int. 2025;107(2):234-254 PMID:39848746
  28. KDIGO ADPKD Work Group. KDIGO 2025 Clinical Practice Guideline for the Evaluation, Management, and Treatment of ADPKD. Kidney Int Suppl. 2025;107(2S):S1–S239. Online https://kdigo.org/wp-content/uploads/2025/01/KDIGO-2025-ADPKD-Guideline.pdf (Accessed October 2025)
  29. FDA. Dapagliflozin (Farxiga) US Prescribing Information (2023 update). Online https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/202293s030lbl.pdf (Accessed October 2025)
  30. AIFA. Nota 100 – Inibitori SGLT2: criteri di rimborsabilità e prescrizione (aggiornamento 2024). Online https://www.aifa.gov.it/nota-100 (Accessed October 2025)
  31. EMA. SGLT2 inhibitors – referral human (EMA/142655/2016). Online https://www.ema.europa.eu/en/medicines/human/referrals/sglt2-inhibitors (Accessed October 2025)

Most read articles by the same author(s)

1 2 3 4 5 6 7 8 9 10 > >>