Real-world data: how they can help to improve quality of care


  • Giovanni Corrao Centro Nazionale “Healthcare Research & Pharmacoepidemiology”, Milano and Dipartimento di Statistica e Metodi Quantitativi, Università di Milano Bicocca - Italy
  • Giovanni Alquati Market Access Gilead Science SRL, Milano - Italy
  • Giovanni Apolone Fondazione IRCCS Istituto Nazionale dei Tumori, Milano - Italy
  • Andrea Ardizzoni Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli studi di Bologna - Italy
  • Giuliano Buzzetti Dephaforum, Milano - Italy
  • Giorgio W. Canonica Centro di medicina personalizzata: Asma e Allergologia, Istituto Clinico Humanitas, Milano -Italy
  • Pierfranco Conte IRCCS Istituto Oncologico Veneto, Padova - Italy
  • Elisa Crovato Health Economics and Market Access, Janssen-Cilag SPA, Milano - Italy
  • Francesco Damele Value and Access Head, Sanofi, Milano - Italy
  • Carlo La Vecchia Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi “La Statale” di Milano - Italy
  • Aldo P. Maggioni Centro Studi ANMCO, Firenze - Italy
  • Alberto Mantovani IRCCS Istituto Clinico Humanitas e Humanitas Research University, Milano - Italy
  • Michele Marangi Ufficio attività di analisi e previsione, Agenzia Italiana del Farmaco (AIFA), Roma - Italy
  • Walter Marrocco Federazione Italiana Medici di Famiglia (F.I.M.M.G), Roma - Italy
  • Andrea Messori Regione Toscana ed ESTAR Toscana, Firenze - Italy
  • Alessandro Padovani Clinica Neurologica, Dipartimento Scienze Cliniche e Sperimentali, Università degli Studi di Brescia - Italy
  • Alessandro Rambaldi Unità Operativa di Ematologia, ASST Papa Giovanni XXIII, Bergamo - Italy
  • Walter Ricciardi Dipartimento di Scienze della vita e sanità pubblica, Università Cattolica del Sacro Cuore, Roma - Italy
  • Francesco Ripa di Meana Federazione Italiana Aziende Sanitarie e Ospedaliere (FIASO), Roma - Italy
  • Federico Spandonaro C.R.E.A. Sanità, Università degli Studi di Roma “Tor Vergata”, Roma - Italy
  • Valeria Tozzi Government, Health and Not for Profit division, Università Bocconi, Milano - Italy
  • Giuseppe Mancia Università degli Studi di Milano Bicocca, Milano - Italy



Data, Public health, Real World


The current COVID pandemic crisis made it even clearer that the solutions to several questions that public health must face require the access to good quality data. Several issues of the value and potential of health data and the current critical issues that hinder access are discussed in this paper. In particular, the paper (i) focuses on “real-world data” definition; (ii) proposes a review of the real-world data availability in our country; (iii) discusses its potential, with particular focus on the possibility of improving knowledge on the quality of care provided by the health system; (iv) emphasizes that the availability of data alone is not sufficient to increase our knowledge, underlining the need that innovative analysis methods (e.g., artificial intelligence techniques) must be framed in the paradigm of clinical research; and (v) addresses some ethical issues related to their use. The proposal is to realize an alliance between organizations interested in promoting research aimed at collecting scientifically solid evidence to support the clinical governance of public health.


Liu K, Chen Y, Lin R, Han K. Clinical features of COVID-19 in elderly patients: A comparison with young and middle-aged patients. J Infect. 2020;80(6):e14-e18. PMID:32171866 DOI:

Hewitt J, Carter B, Vilches-Moraga A, et al; COPE Study Collaborators. The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study. Lancet Public Health. 2020;5(8):e444-e451.

Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752-762. PMID:23395245 DOI:

Rockwood K, Mitnitski A. Frailty in relation to the accumulation of deficits. J Gerontol A Biol Sci Med Sci. 2007;62(7):722-727. PMID:17634318 DOI:

Hubbard RE, Peel NM, Samanta M, Gray LC, Mitnitski A, Rockwood K. Frailty status at admission to hospital predicts multiple adverse outcomes. Age Ageing. 2017;46(5):801-806. PMID:28531254 DOI:

Rockwood K, Theou O. Using the clinical frailty scale in allocating scarce health care resource. Can Geriatr J. 2020;23(3):210-215. PMID:32904824 DOI:

Einstein AJ, Shaw LJ, Hirschfeld C, et al; INCAPS COVID Investigators Group. International Impact of COVID-19 on the Diagnosis of Heart Disease. J Am Coll Cardiol. 2021;77(2):173-185. PMID:33446311 DOI:

Wadhera RK, Shen C, Gondi S, Chen S, Kazi DS, Yeh RW. Cardiovascular Deaths During the COVID-19 Pandemic in the United States. J Am Coll Cardiol. 2021;77(2):159-169. PMID:33446309 DOI:

Rosenbaum L. The Untold Toll - The Pandemic’s Effects on Patients without Covid-19. N Engl J Med. 2020;382(24):2368-2371. PMID:32302076 DOI:

MaCroSCOPIO, Osservatorio sulla cronicità. COVID-19 e cronicità: gli impatti indiretti della pandemia. Available at: Last access: 22/07/2021

Higgins V, Sohaei D, Diamandis EP, Prassas I. COVID-19: from an acute to chronic disease? Potential long-term health consequences. Crit Rev Clin Lab Sci. 2021;58:297-310. 10.1080/10408363.2020.1860895 PMID:33347790 DOI:

Phillips S, Williams MA. Confronting Our Next National Health Disaster - Long-Haul Covid. N Engl J Med. 2021. Epub ahead of print. PMID:34192429 DOI:

Lal A, Erondu NA, Heymann DL, Gitahi G, Yates R. Fragmented health systems in COVID-19: rectifying the misalignment between global health security and universal health coverage. Lancet. 2021;397(10268):61-67. DOI:

Ippolito G, Lauria FN, Locatelli F, et al. Lessons from the COVID-19 Pandemic-Unique Opportunities for Unifying, Revamping and Reshaping Epidemic Preparedness of Europe’s Public Health Systems. Int J Infect Dis. 2020;101:361-366. DOI:

Horton R. Offline: COVID-19 is not a pandemic. Lancet. 2020;396(10255):874. PMID:32979964 DOI:

Bolislis WR, Fay M, Kühler TC. Use of Real-world Data for New Drug Applications and Line Extensions. Clin Ther. 2020;42(5):926-938. DOI:

Corrao G, Mancia G. Generating evidence from computerized healthcare utilization databases. Hypertension. 2015;65(3):490-498. DOI:

Trifirò G, Gini R, Barone-Adesi F, et al. The Role of European Healthcare Databases for Post-Marketing Drug Effectiveness, Safety and Value Evaluation: Where Does Italy Stand? Drug Saf. 2019;42(3):347-363. PMID:30269245 DOI:

Schmidt H. Vaccine Rationing and the Urgency of Social Justice in the Covid-19 Response. Hastings Cent Rep. 2020;50(3):46-49. PMID:32468631 DOI:

Mancia G, Rea F, Corrao G. RAAS Inhibitors and Risk of Covid-19. Reply. [Reply]. N Engl J Med. 2020;383(20):1993. PMID:33108106 DOI:

Bavishi C, Whelton PK, Mancia G, Corrao G, Messerli FH. Renin-angiotensin-system inhibitors and all-cause mortality in patients with COVID-19: a systematic review and meta-analysis of observational studies. J Hypertens. 2021;39(4):784-794; Epub ahead of print. PMID:33560054 DOI:

Istituto Oncologico Veneto IRCCS. PDTA e linee guida. Online.

MaCroSCOPIO, Osservatorio sulla cronicità. Guide ai PDTA. Costruisci PDTA. Online Last access: 22/07/2021

MaCroSCOPIO, Osservatorio sulla cronicità. Guide ai PDTA. Valuta PDTA. Online Last access: 22/07/2021

Wade D. Ethics of collecting and using healthcare data. BMJ. 2007;334(7608):1330-1331. PMID:17599978 DOI:

Payne JL. Fishing expedition probability: The wtatistics of post hoc hypothesizing. Polity. 1974;7(1):130-138. Accessed February 12, 2021. DOI:

McLennan S, Lee MM, Fiske A, Celi LA. AI Ethics Is Not a Panacea. Am J Bioeth. 2020;20(11):20-22. PMID:33103983 DOI:

Bærøe K, Jansen M, Kerasidou A. Machine Learning in Healthcare: Exceptional Technologies Require Exceptional Ethics. Am J Bioeth. 2020;20(11):48-51. PMID:33103974 DOI:

Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ. 2020;369:m1312. PMID:32238345 DOI:

Mills JL. Data torturing. N Engl J Med. 1993;329(16):1196-1199. PMID:8166792 DOI:

Garrison LP Jr, Neumann PJ, Erickson P, Marshall D, Mullins CD. Using real-world data for coverage and payment decisions: the ISPOR Real-World Data Task Force report. Value Health. 2007;10(5):326-335. PMID:17888097 DOI:



How to Cite

Corrao G, Alquati G, Apolone G, Ardizzoni A, Buzzetti G, Canonica GW, Conte P, Crovato E, Damele F, La Vecchia C, Maggioni AP, Mantovani A, Marangi M, Marrocco W, Messori A, Padovani A, Rambaldi A, Ricciardi W, Ripa di Meana F, Spandonaro F, Tozzi V, Mancia G. Real-world data: how they can help to improve quality of care. Grhta [Internet]. 2021 Sep. 21 [cited 2023 Jun. 8];8(1):134-9. Available from:



Point of View


Most read articles by the same author(s)