Autosomal dominant polycystic kidney: from pathogenesis to therapy

Authors

  • Giovanni Piscopo Nefrologia, Dialisi e Trapianto, AOUC Policlinico di Bari, Bari - Italy

DOI:

https://doi.org/10.33393/gcnd.2022.2489

Keywords:

Autosomal Dominant Polycystic Kidney Disease (ADPKD), Cyst formation, Renal tissue damage

Abstract

Autosomal Dominant Polycystic Kidney (ADPKD) is the most common genetically determined kidney disease of Mendelian inheritance. It has a variable prevalence, depending on the case series, from 1:1,000 to 1:2,500, and represents the fourth cause of renal failure in the world. It is part of the so-called ciliopathies and is mainly caused by the mutation of two genes: PKD1, located on chromosome 16p and the PKD2 gene, located on chromosome 4q and coding for Polycystin-2 (PC2); although two other disease-causing genes have recently been identified: DNAJB11 and GANAB. These two proteins consist, respectively, of a calcium channel and a transmembrane receptor, and they play a decisive role in regulating cell proliferation, division and differentiation, apoptosis and autophagy. The molecular mechanisms underlying the genesis of the cysts are multiple and for this reason not yet completely understood and although several of them have been the subject of preclinical and clinical studies aimed at evaluating the efficacy of therapies that could continue to interfere in a specific way, to date, only tolvaptan and octreotide-LAR (the latter only in Italy) have been approved for the treatment of renal disease secondaryto ADPKD. Here, we therefore recapitulate the different pathogenetic pathways in ADPKD and the possible therapeutic treatments.

Downloads

Download data is not yet available.

References

Willey CJ, Blais JD, Hall AK, Krasa HB, Makin AJ, Czerwiec FS. Prevalence of autosomal dominant polycystic kidney disease in the European Union. Nephrol Dial Transplant. 2017;32(8):1356-1363. https://doi.org/10.1093/ndt/gfw240 PMID: 27325254 DOI: https://doi.org/10.1093/ndt/gfw240

Cornec-Le Gall E, Olson RJ, Besse W, et al. Monoallelic Mutations to DNAJB11 Cause Atypical Autosomal-Dominant Polycystic Kidney Disease. Am J Hum Genet. 2018;102(5):832-844. . https://doi.org/10.1016/j.ajhg.2018.03.013 PMID: 29706351 DOI: https://doi.org/10.1016/j.ajhg.2018.03.013

Porath B, Gainullin VG, Cornec-Le Gall E, et al; Genkyst Study Group, HALT Progression of Polycystic Kidney Disease Group; Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease. Mutations in GANAB, Encoding the Glucosidase IIα Subunit, Cause Autosomal-Dominant Polycystic Kidney and Liver Disease. Am J Hum Genet. 2016;98(6):1193-1207. https://doi.org/10.1016/j.ajhg.2016.05.004 PMID:27259053 DOI: https://doi.org/10.1016/j.ajhg.2016.05.004

Harris PC, Torres VE. Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest. 2014;124(6):2315-2324. https://pubmed.ncbi.nlm.nih.gov/24892705/ https://doi.org/10.1172/JCI72272 PMID:24892705 DOI: https://doi.org/10.1172/JCI72272

Yoder BK. Role of primary cilia in the pathogenesis of polycystic kidney disease. J Am Soc Nephrol. 2007;18(5):1381-1388. https://pubmed.ncbi.nlm.nih.gov/17429051/ https://doi.org/10.1681/ASN.2006111215PMID:17429051 DOI: https://doi.org/10.1681/ASN.2006111215

Chebib FT, Torres VE. Autosomal Dominant Polycystic Kidney Disease: Core Curriculum 2016. Am J Kidney Dis. 2016;;67(5):792-810. https://doi.org/10.1053/j.ajkd.2015.07.037 PMID: 26530876 DOI: https://doi.org/10.1053/j.ajkd.2015.07.037

Hopp K, Ward CJ, Hommerding CJ, et al. Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity. J Clin Invest. 2012;122(11):4257-4273. https://pubmed.ncbi.nlm.nih.gov/23064367/ https://doi.org/10.1172/JCI64313PMID:23064367 DOI: https://doi.org/10.1172/JCI64313

Lantinga-van Leeuwen IS, Dauwerse JG, Baelde HJ, et al. Lowering of Pkd1 expression is sufficient to cause polycystic kidney disease. Hum Mol Genet. 2004;13(24):3069-3077. https://pubmed.ncbi.nlm.nih.gov/15496422/ https://doi.org/10.1093/hmg/ddh336PMID:15496422 DOI: https://doi.org/10.1093/hmg/ddh336

Torres VE, Ong ACM. Cellular signaling in PKD: foreword. Cell Signal. 2020;71:109625. https://pubmed.ncbi.nlm.nih.gov/32247773/https://doi.org/10.1016/j.cellsig.2020.109625 PMID:32247773 DOI: https://doi.org/10.1016/j.cellsig.2020.109625

Torres VE, Wang X, Qian Q, Somlo S, Harris PC, Gattone VH II. Effective treatment of an orthologous model of autosomal dominant polycystic kidney disease. Nat Med. 2004;10(4):363-364. http://www.nature.com/doifinder/10.1038/nm1004https://doi.org/10.1038/nm1004 PMID:14991049 DOI: https://doi.org/10.1038/nm1004

Torres VE, Higashihara E, Devuyst O, et al; TEMPO 3:4 Trial Investigators. Effect of tolvaptan in autosomal dominant polycystic kidney disease by CKD stage: Results from the TEMPO 3:4 trial. Clin J Am Soc Nephrol. 2016;11(5):803-811. https://doi.org/10.2215/CJN.06300615 PMID:26912543 DOI: https://doi.org/10.2215/CJN.06300615

Torres VE, Chapman AB, Devuyst O, et al; TEMPO 4:4 Trial Investigators. Multicenter, open-label, extension trial to evaluate the long-term efficacy and safety of early versus delayed treatment with tolvaptan in autosomal dominant polycystic kidney disease: the TEMPO 4:4 Trial. Nephrol Dial Transplant. 2018;33(3):477-489. http://www.ncbi.nlm.nih.gov/pubmed/28379536 https://doi.org/10.1093/ndt/gfx043PMID:28379536 DOI: https://doi.org/10.1093/ndt/gfx043

Torres VE, Chapman AB, Devuyst O, et al; REPRISE Trial Investigators. Tolvaptan in Later-Stage Autosomal Dominant Polycystic Kidney Disease. N Engl J Med. 2017;377(20):1930-1942. https://pubmed.ncbi.nlm.nih.gov/29105594/https://doi.org/10.1056/NEJMoa1710030 PMID:29105594 DOI: https://doi.org/10.1056/NEJMoa1710030

Thomas M, Gois PHF, Butcher BE, Ta MHT, Van Wyk GW. Treatment persistence to tolvaptan in patients with autosomal dominant polycystic kidney disease: a secondary use of data analysis of patients in the IMADJIN® dataset. BMC Nephrol. 2021;22(1):400. https://pubmed.ncbi.nlm.nih.gov/34856944/ https://doi.org/10.1186/s12882-021-02607-4 PMID:34856944 DOI: https://doi.org/10.1186/s12882-021-02607-4

Kramers BJ, van Gastel MDA, Boertien WE, Meijer E, Gansevoort RT. Determinants of Urine Volume in ADPKD Patients Using the Vasopressin V2 Receptor Antagonist Tolvaptan. Am J Kidney Dis. 2019;73(3):354-362. https://pubmed.ncbi.nlm.nih.gov/30578153/ https://doi.org/10.1053/j.ajkd.2018.09.016PMID:30578153 DOI: https://doi.org/10.1053/j.ajkd.2018.09.016

Kramers BJ, Koorevaar IW, van Gastel MDA, et al. Effects of Hydrochlorothiazide and Metformin on Aquaresis and Nephroprotection by a Vasopressin V2 Receptor Antagonist in ADPKD: A Randomized Crossover Trial. Clin J Am Soc Nephrol. 2022;17(4):507-517. https://pubmed.ncbi.nlm.nih.gov/35314480/https://doi.org/10.2215/CJN.11260821 PMID:35314480 DOI: https://doi.org/10.2215/CJN.11260821

Kipp KR, Kruger SL, Schimmel MF, et al. Comparison of folate-conjugated rapamycin versus unconjugated rapamycin in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol. 2018;315(2):F395-F405. https://pubmed.ncbi.nlm.nih.gov/29717938/ https://doi.org/10.1152/ajprenal.00057.2018PMID:29717938 DOI: https://doi.org/10.1152/ajprenal.00057.2018

Wei H, Wang JY. Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci. 2021;22(5):1-20. https://pubmed.ncbi.nlm.nih.gov/33668983/ https://doi.org/10.3390/ijms22052284PMID:33668983 DOI: https://doi.org/10.3390/ijms22052284

Schrier RW, Abebe KZ, Perrone RD, et al; HALT-PKD Trial Investigators. Blood pressure in early autosomal dominant polycystic kidney disease. N Engl J Med. 2014;371(24):2255-2266. https://doi.org/10.1056/NEJMoa1402685 PMID:25399733 DOI: https://doi.org/10.1056/NEJMoa1402685

Irazabal M v., Abebe KZ, Bae KT, et al. Prognostic enrichment design in clinical trials for autosomal dominant polycystic kidney disease: the HALT-PKD clinical trial. Nephrol Dial Transplant. 2017 Nov 1;32(11):1857-1865. https://doi.org/10.1093/ndt/gfw294 PMID: 27484667 DOI: https://doi.org/10.1093/ndt/gfw294

Warner G, Hein KZ, Nin V, et al. Food restriction ameliorates the development of polycystic kidney disease. J Am Soc Nephrol. 2016;27(5):1437-1447. https://doi.org/10.1681/ASN.2015020132 PMID:26538633 DOI: https://doi.org/10.1681/ASN.2015020132

Nowak KL, Hopp K. Metabolic reprogramming in autosomal dominant polycystic kidney disease evidence and therapeutic potential. Clin J Am Soc Nephrol. 2020;15(4):577-584. https://doi.org/10.2215/CJN.13291019 PMID:32086281 DOI: https://doi.org/10.2215/CJN.13291019

Kramers BJ, Koorevaar IW, Drenth JPH, et al. Salt, but not protein intake, is associated with accelerated disease progression in autosomal dominant polycystic kidney disease. Kidney Int. 2020;98(4):989-998. https://pubmed.ncbi.nlm.nih.gov/32534051/https://doi.org/10.1016/j.kint.2020.04.053 PMID:32534051 DOI: https://doi.org/10.1016/j.kint.2020.04.053

Torres VE, Abebe KZ, Schrier RW, et al. Dietary salt restriction is beneficial to the management of autosomal dominant polycystic kidney disease. Kidney Int. 2017;91(2):493-500. https://pubmed.ncbi.nlm.nih.gov/27993381/https://doi.org/10.1016/j.kint.2016.10.018 PMID:27993381 DOI: https://doi.org/10.1016/j.kint.2016.10.018

Barash I, Ponda MP, Goldfarb DS, Skolnik EY. A pilot clinical study to evaluate changes in urine osmolality and urine cAMP in response to acute and chronic water loading in autosomal dominant polycystic kidney disease. Clin J Am Soc Nephrol. 2010;5(4):693-697. https://doi.org/10.2215/CJN.04180609 PMID:20167686 DOI: https://doi.org/10.2215/CJN.04180609

Wang CJ, Creed C, Winklhofer FT, Grantham JJ. Water prescription in autosomal dominant polycystic kidney disease: a pilot study. Clin J Am Soc Nephrol. 2011;6(1):192-197. https://pubmed.ncbi.nlm.nih.gov/20876670/https://doi.org/10.2215/CJN.03950510 PMID:20876670 DOI: https://doi.org/10.2215/CJN.03950510

El-Damanawi R, Lee M, Harris T, et al. Randomised controlled trial of high versus ad libitum water intake in patients with autosomal dominant polycystic kidney disease: rationale and design of the DRINK feasibility trial. BMJ Open. 2018;8(5):e022859. https://doi.org/10.1136/bmjopen-2018-022859 PMID:29743334 DOI: https://doi.org/10.2139/ssrn.3294762

Wong ATY, Mannix C, Grantham JJ, et al. Randomised controlled trial to determine the efficacy and safety of prescribed water intake to prevent kidney failure due to autosomal dominant polycystic kidney disease (PREVENT-ADPKD). BMJ Open. 2018;8(1):e018794. https://doi.org/10.1136/bmjopen-2017-018794 PMID: 29358433 DOI: https://doi.org/10.1136/bmjopen-2017-018794corr1

Torres VE. Water for ADPKD? Probably, yes. J Am Soc Nephrol. 2006;17(8):2089–91. https://doi.org/10.1681/asn.2006060603 PMID: 16837639 https://pubmed.ncbi.nlm.nih.gov/16837639/ DOI: https://doi.org/10.1681/ASN.2006060603

Natoli TA, Modur V, Ibraghimov-Beskrovnaya O. Glycosphingolipid metabolism and polycystic kidney disease. Cell Signal. 2020;69:109526. https://doi.org/10.1016/j.cellsig.2020.109526 PMID:31911181 DOI: https://doi.org/10.1016/j.cellsig.2020.109526

Kartal Yandım M, Apohan E, Baran Y. Therapeutic potential of targeting ceramide/glucosylceramide pathway in cancer. Cancer Chemother Pharmacol. 2013;71(1):13-20. https://doi.org/10.1007/s00280-012-1984-x PMID:23073611 DOI: https://doi.org/10.1007/s00280-012-1984-x

A medical research study designed to determine if venglustat can be a future treatment for ADPKD patients. Online https://clinicaltrials.gov/ct2/show/NCT03523728 (Accessed August 2022)

To evaluate the safety, tolerability, pharmacokinetics and pharmacodynamics of oral AL01211 in healthy volunteers and Autosomal Dominant Polycystic Kidney Disease Subjects. Online https://clinicaltrials.gov/ct2/show/NCT04908462 (Accessed August 2022)

Lu Y, Sun Y, Liu Z, et al. Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease. Sci Transl Med. 2020;12(554):eaba3613. https://doi.org/10.1126/scitranslmed.aba3613 PMID:32727915 DOI: https://doi.org/10.1126/scitranslmed.aba3613

Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 2013;53(1):401-426. https://pubmed.ncbi.nlm.nih.gov/23294312/https://doi.org/10.1146/annurev-pharmtox-011112-140320 PMID:23294312 DOI: https://doi.org/10.1146/annurev-pharmtox-011112-140320

Ahmad R, Raina D, Meyer C, Kharbanda S, Kufe D. Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J Biol Chem. 2006;281(47):35764-35769. https://pubmed.ncbi.nlm.nih.gov/16998237/https://doi.org/10.1074/jbc.M607160200 PMID:16998237 DOI: https://doi.org/10.1074/jbc.M607160200

Pergola PE, Raskin P, Toto RD, et al; BEAM Study Investigators. Bardoxolone methyl and kidney function in CKD with type 2 diabetes. N Engl J Med. 2011;365(4):327-336. https://pubmed.ncbi.nlm.nih.gov/21699484/https://doi.org/10.1056/NEJMoa1105351 PMID:21699484 DOI: https://doi.org/10.1056/NEJMoa1105351

de Zeeuw D, Akizawa T, Audhya P, et al; BEACON Trial Investigators. Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med. 2013;369(26):2492-2503. https://pubmed.ncbi.nlm.nih.gov/24206459/https://doi.org/10.1056/NEJMoa1306033 PMID:24206459 DOI: https://doi.org/10.1056/NEJMoa1306033

A trial of bardoxolone methyl in patients with ADPKD - FALCON Online https://clinicaltrials.gov/ct2/show/NCT03918447 (Accessed August 2022)

Hallows KR. Emerging role of AMP-activated protein kinase in coupling membrane transport to cellular metabolism. Curr Opin Nephrol Hypertens. 2005;14(5):464-471. http://www.ncbi.nlm.nih.gov/pubmed/16046906https://doi.org/10.1097/01.mnh.0000174145.14798.64 PMID:16046906 DOI: https://doi.org/10.1097/01.mnh.0000174145.14798.64

Lebeau C, Hanaoka K, Moore-Hoon ML, Guggino WB, Beauwens R, Devuyst O. Basolateral chloride transporters in autosomal dominant polycystic kidney disease. Pflugers Arch. 2002;444(6):722-731. http://link.springer.com/10.1007/s00424-002-0880-3 https://doi.org/10.1007/s00424-002-0880-3 PMID:12355171 DOI: https://doi.org/10.1007/s00424-002-0880-3

Hanaoka K, Guggino WB. cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells. J Am Soc Nephrol. 2000;11(7):1179-1187. http://www.ncbi.nlm.nih.gov/pubmed/10864573 https://doi.org/10.1681/ASN.V1171179PMID:10864573 DOI: https://doi.org/10.1681/ASN.V1171179

Hallows KR, Raghuram V, Kemp BE, Witters LA, Foskett JK. Inhibition of cystic fibrosis transmembrane conductance regulator by novel interaction with the metabolic sensor AMP-activated protein kinase. J Clin Invest. 2000;105(12):1711-1721. http://www.ncbi.nlm.nih.gov/pubmed/10862786 https://doi.org/10.1172/JCI9622 PMID:10862786 DOI: https://doi.org/10.1172/JCI9622

Yang B, Sonawane ND, Zhao D, Somlo S, Verkman AS. Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease. J Am Soc Nephrol. 2008;19(7):1300-1310. https://pubmed.ncbi.nlm.nih.gov/18385427/https://doi.org/10.1681/ASN.2007070828 PMID:18385427 DOI: https://doi.org/10.1681/ASN.2007070828

Laselva O, Guerra L, Castellani S, Favia M, Di Gioia S, Conese M. Small-molecule drugs for cystic fibrosis: where are we now? Pulm Pharmacol Ther. 2022;72:102098. https://pubmed.ncbi.nlm.nih.gov/34793977/ https://doi.org/10.1016/j.pupt.2021.102098PMID:34793977 DOI: https://doi.org/10.1016/j.pupt.2021.102098

A study to evaluate the effects of GLPG2737 in participants with Autosomal Dominant Polycystic Kidney Disease (ADPKD) Online https://clinicaltrials.gov/ct2/show/NCT04578548 (Accessed August 2022)

King JD Jr, Fitch AC, Lee JK, et al. AMP-activated protein kinase phosphorylation of the R domain inhibits PKA stimulation of CFTR. Am J Physiol Cell Physiol. 2009;297(1):C94-C101. https://pubmed.ncbi.nlm.nih.gov/19419994/https://doi.org/10.1152/ajpcell.00677.2008 PMID:19419994 DOI: https://doi.org/10.1152/ajpcell.00677.2008

Takiar V, Nishio S, Seo-Mayer P, et al. Activating AMP-activated protein kinase (AMPK) slows renal cystogenesis. Proc Natl Acad Sci USA. 2011;108(6):2462-2467. http://www.pnas.org/cgi/doi/10.1073/pnas.1011498108https://doi.org/10.1073/pnas.1011498108 PMID:21262823 DOI: https://doi.org/10.1073/pnas.1011498108

Chang MY, Ma TL, Hung CC, et al. Metformin Inhibits Cyst Formation in a Zebrafish Model of Polycystin-2 Deficiency. Sci Rep. 2017;7(1):7161. https://pubmed.ncbi.nlm.nih.gov/28769124/ https://doi.org/10.1038/s41598-017-07300-xPMID:28769124 DOI: https://doi.org/10.1038/s41598-017-07300-x

Sato Y, Qiu J, Hirose T, et al. Metformin slows liver cyst formation and fibrosis in experimental model of polycystic liver disease. Am J Physiol Gastrointest Liver Physiol. 2021;320(4):G464-G473. https://pubmed.ncbi.nlm.nih.gov/33439105/https://doi.org/10.1152/ajpgi.00120.2020 PMID:33439105 DOI: https://doi.org/10.1152/ajpgi.00120.2020

Pastor-Soler NM, Li H, Pham J, et al. Metformin improves relevant disease parameters in an autosomal dominant polycystic kidney disease mouse model. Am J Physiol Renal Physiol. 2022;322(1):F27-F41. https://pubmed.ncbi.nlm.nih.gov/34806449/https://doi.org/10.1152/ajprenal.00298.2021 PMID:34806449 DOI: https://doi.org/10.1152/ajprenal.00298.2021

Leonhard WN, Song X, Kanhai AA, et al. Salsalate, but not metformin or canagliflozin, slows kidney cyst growth in an adult-onset mouse model of polycystic kidney disease. EBioMedicine. 2019;47:436-445. https://pubmed.ncbi.nlm.nih.gov/31473186/https://doi.org/10.1016/j.ebiom.2019.08.041 PMID:31473186 DOI: https://doi.org/10.1016/j.ebiom.2019.08.041

Chang MY, Tsai CY, Chou LF, et al. Metformin induces lactate accumulation and accelerates renal cyst progression in Pkd1-deficient mice. Hum Mol Genet. 2022;31(10):1560-1573. https://pubmed.ncbi.nlm.nih.gov/34957500/https://doi.org/10.1093/hmg/ddab340 PMID:34957500 DOI: https://doi.org/10.1093/hmg/ddab340

Pisani A, Riccio E, Bruzzese D, Sabbatini M. Metformin in autosomal dominant polycystic kidney disease: experimental hypothesis or clinical fact? BMC Nephrol. 2018;19(1):282. https://bmcnephrol.biomedcentral.com/articles/10.1186/s12882-018-1090-3https://doi.org/10.1186/s12882-018-1090-3 PMID:30348113 DOI: https://doi.org/10.1186/s12882-018-1090-3

Perrone RD, Abebe KZ, Watnick TJ, et al. Primary results of the randomized trial of metformin administration in polycystic kidney disease (TAME PKD). Kidney Int. 2021;100(3):684-696. https://pubmed.ncbi.nlm.nih.gov/34186056/https://doi.org/10.1016/j.kint.2021.06.013 PMID:34186056 DOI: https://doi.org/10.1016/j.kint.2021.06.013

Brosnahan GM, Wang W, Gitomer B, et al. Metformin Therapy in Autosomal Dominant Polycystic Kidney Disease: A Feasibility Study. Am J Kidney Dis. 2022;79(4):518-526. https://pubmed.ncbi.nlm.nih.gov/34391872/https://doi.org/10.1053/j.ajkd.2021.06.026 PMID:34391872 DOI: https://doi.org/10.1053/j.ajkd.2021.06.026

Metformin vs tolvaptan for treatment of Autosomal Dominant Polycystic Kidney Disease. Online https://clinicaltrials.gov/ct2/show/NCT03764605?term=NCT03764605&draw=2&rank=1 (Accessed August 2022)

Implementation of metformin therapy to ease decline of kidney function in Polycystic Kidney Disease (IMPEDE-PKD) Online https://clinicaltrials.gov/ct2/show/NCT04939935?term=NCT04939935&draw=2&rank=1 (Accessed August 2022)

Patel V, Williams D, Hajarnis S, et al. miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc Natl Acad Sci USA. 2013;110(26):10765-10770. https://pubmed.ncbi.nlm.nih.gov/23759744/https://doi.org/10.1073/pnas.1301693110 PMID:23759744 DOI: https://doi.org/10.1073/pnas.1301693110

Yheskel M, Lakhia R, Cobo-Stark P, Flaten A, Patel V. Anti-microRNA screen uncovers miR-17 family within miR-17~92 cluster as the primary driver of kidney cyst growth. Sci Rep. 2019;9(1):1920. https://pubmed.ncbi.nlm.nih.gov/30760828/https://doi.org/10.1038/s41598-019-38566-y PMID:30760828 DOI: https://doi.org/10.1038/s41598-019-38566-y

A study of RGLS4326 in patients with Autosomal Dominant Polycystic Kidney Disease. Online https://clinicaltrials.gov/ct2/show/NCT04536688 (Accessed August 2022)

Sun W, Lee TS, Zhu M, et al. Statins activate AMP-activated protein kinase in vitro and in vivo. Circulation. 2006;114(24):2655-2662. https://pubmed.ncbi.nlm.nih.gov/17116771/https://doi.org/10.1161/CIRCULATIONAHA.106.630194 PMID:17116771 DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.630194

Xue C, Zhang LM, Zhou C, Mei CL, Yu SQ. Effect of Statins on Renal Function and Total Kidney Volume in Autosomal Dominant Polycystic Kidney Disease. Kidney Dis. 2020;6(6):407-413. https://pubmed.ncbi.nlm.nih.gov/33313061/https://doi.org/10.1159/000509087 PMID:33313061 DOI: https://doi.org/10.1159/000509087

Statin therapy in patients with early stage ADPKD. Online https://clinicaltrials.gov/ct2/show/NCT03273413 (Accessed August 2022)

Saini AK, Saini R, Singh S. Autosomal dominant polycystic kidney disease and pioglitazone for its therapy: a comprehensive review with an emphasis on the molecular pathogenesis and pharmacological aspects. Mol Med. 2020;26(1):128. https://pubmed.ncbi.nlm.nih.gov/33308138/ https://doi.org/10.1186/s10020-020-00246-3PMID:33308138 DOI: https://doi.org/10.1186/s10020-020-00246-3

Blazer-Yost BL, Bacallao RL, Erickson BJ, et al. A randomized phase 1b cross-over study of the safety of low-dose pioglitazone for treatment of autosomal dominant polycystic kidney disease. Clin Kidney J. 2021;14(7):1738-1746. https://pubmed.ncbi.nlm.nih.gov/34221381/ https://doi.org/10.1093/ckj/sfaa232 PMID:34221381 DOI: https://doi.org/10.1093/ckj/sfaa232

Sweeney WE, Frost P, Avner ED. Tesevatinib ameliorates progression of polycystic kidney disease in rodent models of autosomal recessive polycystic kidney disease. World J Nephrol. 2017;6(4):188-200. https://pubmed.ncbi.nlm.nih.gov/28729967/ https://doi.org/10.5527/wjn.v6.i4.188 PMID:28729967 DOI: https://doi.org/10.5527/wjn.v6.i4.188

Study of the efficacy and safety of tesevatinib in subjects with ADPKD Online https://clinicaltrials.gov/ct2/show/NCT03203642 (Accessed August 2022)

Sweeney WE Jr, von Vigier RO, Frost P, Avner ED. Src inhibition ameliorates polycystic kidney disease. J Am Soc Nephrol. 2008;19(7):1331-1341. https://pubmed.ncbi.nlm.nih.gov/18385429/ https://doi.org/10.1681/ASN.2007060665PMID:18385429 DOI: https://doi.org/10.1681/ASN.2007060665

Tesar V, Ciechanowski K, Pei Y, et al. Bosutinib versus Placebo for Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol. 2017;28(11):3404-3413. https://pubmed.ncbi.nlm.nih.gov/28838955/ https://doi.org/10.1681/ASN.2016111232PMID:28838955 DOI: https://doi.org/10.1681/ASN.2016111232

Kahkhaie KR, Mirhosseini A, Aliabadi A, et al. Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology. 2019;27(5):885-900. https://pubmed.ncbi.nlm.nih.gov/31140036/https://doi.org/10.1007/s10787-019-00607-3 PMID:31140036 DOI: https://doi.org/10.1007/s10787-019-00607-3

Leonhard WN, van der Wal A, Novalic Z, et al. Curcumin inhibits cystogenesis by simultaneous interference of multiple signaling pathways: in vivo evidence from a Pkd1-deletion model. Am J Physiol Renal Physiol. 2011;300(5):F1193-F1202. https://pubmed.ncbi.nlm.nih.gov/21345977/ https://doi.org/10.1152/ajprenal.00419.2010PMID:21345977 DOI: https://doi.org/10.1152/ajprenal.00419.2010

Nowak KL, Farmer-Bailey H, Wang W, et al. Curcumin Therapy to Treat Vascular Dysfunction in Children and Young Adults with ADPKD: A Randomized Controlled Trial. Clin J Am Soc Nephrol. 2022;17(2):240-250. https://clinicaltrials.gov/ct2/show/NCT02494141 https://doi.org/10.2215/CJN.08950621PMID:34907021 DOI: https://doi.org/10.2215/CJN.08950621

Kipp KR, Rezaei M, Lin L, Dewey EC, Weimbs T. A mild reduction of food intake slows disease progression in an orthologous mouse model of polycystic kidney disease. Am J Physiol Renal Physiol. 2016;310(8):F726-F731. Accessed August 24, 2022. https://pubmed.ncbi.nlm.nih.gov/26764208/ https://doi.org/10.1152/ajprenal.00551.2015PMID:26764208 DOI: https://doi.org/10.1152/ajprenal.00551.2015

Daily caloric restriction and intermittent fasting in overweight and obese adults with Autosomal Dominant Polycystic Kidney Disease. Online https://clinicaltrials.gov/ct2/show/NCT03342742 (Accessed August 2022)

Tao Y, Kim J, Yin Y, et al. VEGF receptor inhibition slows the progression of polycystic kidney disease. Kidney Int. 2007;72(11):1358-1366. https://pubmed.ncbi.nlm.nih.gov/17882148/ https://doi.org/10.1038/sj.ki.5002550PMID:17882148 DOI: https://doi.org/10.1038/sj.ki.5002550

Raina S, Honer M, Krämer SD, et al. Anti-VEGF antibody treatment accelerates polycystic kidney disease. Am J Physiol Renal Physiol. 2011;301(4):F773-F783. https://pubmed.ncbi.nlm.nih.gov/21677148/ https://doi.org/10.1152/ajprenal.00058.2011PMID:21677148 DOI: https://doi.org/10.1152/ajprenal.00058.2011

Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13(4):290-314. https://pubmed.ncbi.nlm.nih.gov/24687066/ https://doi.org/10.1038/nrd4228PMID:24687066 DOI: https://doi.org/10.1038/nrd4228

Omar F, Findlay JE, Carfray G, et al. Small-molecule allosteric activators of PDE4 long form cyclic AMP phosphodiesterases. Proc Natl Acad Sci USA. 2019;116(27):13320-13329. https://pubmed.ncbi.nlm.nih.gov/31209056 https://doi.org/10.1073/pnas.1822113116 PMID:31209056 DOI: https://doi.org/10.1073/pnas.1822113116

MacKenzie SJ, Baillie GS, McPhee I, et al. Long PDE4 cAMP specific phosphodiesterases are activated by protein kinase A-mediated phosphorylation of a single serine residue in Upstream Conserved Region 1 (UCR1). Br J Pharmacol. 2002 Jun;136(3):421-33. https://doi.org/10.1038/sj.bjp.0704743 PMID: 12023945 DOI: https://doi.org/10.1038/sj.bjp.0704743

Rowe I, Chiaravalli M, Mannella V, et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med. 2013;19(4):488-493. https://pubmed.ncbi.nlm.nih.gov/23524344/ https://doi.org/10.1038/nm.3092PMID:23524344 DOI: https://doi.org/10.1038/nm.3092

Riwanto M, Kapoor S, Rodriguez D, Edenhofer I, Segerer S, Wüthrich RP. Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease. PLoS One. 2016;11(1):e0146654 https://pubmed.ncbi.nlm.nih.gov/26752072/https://doi.org/10.1371/journal.pone.0146654 PMID:26752072 DOI: https://doi.org/10.1371/journal.pone.0146654

Chiaravalli M, Rowe I, Mannella V, et al. 2-Deoxy-d-Glucose Ameliorates PKD Progression. J Am Soc Nephrol. 2016;27(7):1958-1969. https://pubmed.ncbi.nlm.nih.gov/26534924/ https://doi.org/10.1681/ASN.2015030231PMID:26534924 DOI: https://doi.org/10.1681/ASN.2015030231

Gradilone SA, Masyuk TV, Huang BQ, et al. Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology. 2010;139(1):304-14.e2. https://doi.org/10.1053/j.gastro.2010.04.010 PMID: 20399209 DOI: https://doi.org/10.1053/j.gastro.2010.04.010

Di Mise A, Tamma G, Ranieri M, et al. Activation of Calcium-Sensing Receptor increases intracellular calcium and decreases cAMP and mTOR in PKD1 deficient cells. Sci Rep. 2018;8(1):5704. https://pubmed.ncbi.nlm.nih.gov/29632324/https://doi.org/10.1038/s41598-018-23732-5 PMID:29632324 DOI: https://doi.org/10.1038/s41598-018-23732-5

Gattone VH II, Chen NX, Sinders RM, et al. Calcimimetic inhibits late-stage cyst growth in ADPKD. J Am Soc Nephrol. 2009;20(7):1527-1532. https://pubmed.ncbi.nlm.nih.gov/19423689/ https://doi.org/10.1681/ASN.2008090927PMID:19423689 DOI: https://doi.org/10.1681/ASN.2008090927

Bukanov NO, Moreno SE, Natoli TA, et al. CDK inhibitors R-roscovitine and S-CR8 effectively block renal and hepatic cystogenesis in an orthologous model of ADPKD. Cell Cycle. 2012;11(21):4040-4046. https://pubmed.ncbi.nlm.nih.gov/23032260/https://doi.org/10.4161/cc.22375 PMID:23032260 DOI: https://doi.org/10.4161/cc.22375

Masyuk T v., Radtke BN, Stroope AJ, et al. Inhibition of Cdc25A suppresses hepato-renal cystogenesis in rodent models of polycystic kidney and liver disease. Gastroenterology 2012;142(3):622-633.e4. https://doi.org/10.1053/j.gastro.2011.11.036 PMID: 22155366 DOI: https://doi.org/10.1053/j.gastro.2011.11.036

Okumura Y, Sugiyama N, Tanimura S, et al. ERK regulates renal cell proliferation and renal cyst expansion in inv mutant mice. Acta Histochem Cytochem. 2009;42(2):39-45. https://pubmed.ncbi.nlm.nih.gov/19492026/ https://doi.org/10.1267/ahc.08040PMID:19492026 DOI: https://doi.org/10.1267/ahc.08040

Calvet JP. MEK inhibition holds promise for polycystic kidney disease. J Am Soc Nephrol. 2006;17(6):1498-1500. https://pubmed.ncbi.nlm.nih.gov/16687624/https://doi.org/10.1681/ASN.2006040353 PMID:16687624 DOI: https://doi.org/10.1681/ASN.2006040353

Sas KM. Targeting B-Raf as a treatment strategy for polycystic kidney disease. Am J Physiol Renal Physiol. 2010;299(5):F942-F943. https://doi.org/10.1152/ajprenal.00485.2010PMID:20810617 DOI: https://doi.org/10.1152/ajprenal.00485.2010

Yamaguchi T, Reif GA, Calvet JP, Wallace DP. Sorafenib inhibits cAMP-dependent ERK activation, cell proliferation, and in vitro cyst growth of human ADPKD cyst epithelial cells. Am J Physiol Renal Physiol. 2010;299(5):F944-F951. https://pubmed.ncbi.nlm.nih.gov/20810616/ https://doi.org/10.1152/ajprenal.00387.2010PMID:20810616 DOI: https://doi.org/10.1152/ajprenal.00387.2010

Fan LX, Li X, Magenheimer B, Calvet JP, Li X. Inhibition of histone deacetylases targets the transcription regulator Id2 to attenuate cystic epithelial cell proliferation. Kidney Int. 2012;81(1):76-85. https://pubmed.ncbi.nlm.nih.gov/21900881/https://doi.org/10.1038/ki.2011.296 PMID:21900881 DOI: https://doi.org/10.1038/ki.2011.296

Cao Y, Semanchik N, Lee SH, et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc Natl Acad Sci USA. 2009;106(51):21819-21824. https://pubmed.ncbi.nlm.nih.gov/19966229/https://doi.org/10.1073/pnas.0911987106 PMID:19966229 DOI: https://doi.org/10.1073/pnas.0911987106

Cebotaru L, Liu Q, Yanda MK, et al. Inhibition of histone deacetylase 6 activity reduces cyst growth in polycystic kidney disease. Kidney Int. 2016;90(1):90-99. https://pubmed.ncbi.nlm.nih.gov/27165822/ https://doi.org/10.1016/j.kint.2016.01.026PMID:27165822 DOI: https://doi.org/10.1016/j.kint.2016.01.026

Yanda MK, Liu Q, Cebotaru L. An inhibitor of histone deacetylase 6 activity, ACY-1215, reduces cAMP and cyst growth in polycystic kidney disease. Am J Physiol Renal Physiol. 2017;313(4):F997-F1004. https://pubmed.ncbi.nlm.nih.gov/28747357/https://doi.org/10.1152/ajprenal.00186.2017 PMID:28747357 DOI: https://doi.org/10.1152/ajprenal.00186.2017

Franchi F, Peterson KM, Xu R, et al. Mesenchymal Stromal Cells Improve Renovascular Function in Polycystic Kidney Disease. Cell Transplant. 2015;24(9):1687-1698. https://pubmed.ncbi.nlm.nih.gov/25290249/https://doi.org/10.3727/096368914X684619 PMID:25290249 DOI: https://doi.org/10.3727/096368914X684619

Li X, Magenheimer BS, Xia S, et al. A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med. 2008;14(8):863-868. https://pubmed.ncbi.nlm.nih.gov/18552856/https://doi.org/10.1038/nm1783 PMID:18552856 DOI: https://doi.org/10.1038/nm1783

Zoja C, Corna D, Locatelli M, et al. Effects of MCP-1 inhibition by bindarit therapy in a rat model of polycystic kidney disease. Nephron. 2015;129(1):52-61. https://pubmed.ncbi.nlm.nih.gov/25531096/ https://doi.org/10.1159/000369149 PMID:25531096 DOI: https://doi.org/10.1159/000369149

Published

2022-12-31

How to Cite

Piscopo, G. (2022). Autosomal dominant polycystic kidney: from pathogenesis to therapy. Giornale Di Clinica Nefrologica E Dialisi, 34(1), 109–117. https://doi.org/10.33393/gcnd.2022.2489

Issue

Section

Polycystic kidney disease - In collaboration with AIRP

Categories

Received 2022-09-08
Accepted 2022-09-13
Published 2022-12-31

Metrics