Cytotoxic activity, selectivity, and clonogenicity of fruits and resins of Saudi medicinal plants against human liver adenocarcinoma
DOI:
https://doi.org/10.33393/dti.2024.3169Keywords:
Clonogenicity, Cytotoxicity, MTT assay, Opuntia ficus-indica, Saudi plants, Selectivity indexAbstract
Background: Edible fruits and resins provide various benefits to mankind including potential medicinal applications. This study aimed to determine the cytotoxicity, selectivity, and clonogenicity of fruits and exudates of certain Saudi medicinal plants (Anethum graveolens (BEP-09), Opuntia ficus-indica (L.) Miller (BEP-10), Boswellia serrata Roxb. ex Colebr. (BEP-11), and Commiphora myrrha (BEP-12)) against human liver adenocarcinoma (HepG2).
Methods: Initial cytotoxicity and cell line selectivity against different cell lines were screened using MTT assay. The most promising extract was subjected to gas chromatography-mass spectrometry (GC-MS) analysis to determine the main phytoconstituents. Clonogenicity was checked for the most active extract.
Results: The selected plants’ fruits and resins possess a significant cytotoxic activity estimated as IC50. The fruit of BEP-10 was found to be the most active extract against liver cancer cells (IC50 = 2.82) comparable to both doxorubicin (IC50 = 1.40) and camptothecin (IC50 = 1.11). It showed a selectivity index of 4.47 compared to the normal human foetal lung fibroblast (MRC5) cells. BEP-10 showed a dose-dependent clonogenic effect against HepG2 cells comparable to the effect of doxorubicin. The GC-MS chromatogram of BEP-10 extract revealed the presence of eight small polar molecules, representing 73% of the total identified compounds and the rest three molecules (27%) were non-polar constituents. The furan derivatives represent the chief components in BEP-10 (16.3%), while the aldehyde 5-(hydroxymethyl)-2-furancarboxaldehyde was found to be the main molecule (13.2%).
Conclusion: The fruits of BEP-10 have a potential cytotoxic effect particularly against HepG2. The identified phytoconstituents in the tested plant extract might contribute to the investigated cytotoxic activity.
Downloads
References
Meena SS, Lal G, Dubey PN, Meena MD. Medicinal and therapeutic uses of Dill (Anethum graveolens L.) – a review. International J Seed Spices. 2019;9(1):14-20. https://www.academia.edu/91484480
Al-Oqail MM, Farshori NN. Antioxidant and anticancer efficacies of Anethum graveolens against human breast carcinoma cells through oxidative stress and caspase dependency. BioMed Res Int. 2021;2021:5535570. https://doi.org/10.1155/2021/5535570 PMID:33997002 DOI: https://doi.org/10.1155/2021/5535570
Kaur N, Chahal KK, Kumar A, Singh R, Bhardwaj U. Antioxidant activity of Anethum graveolens L. essential oil constituents and their chemical analogues. J Food Biochem. 2019;43(4):e12782. https://doi.org/10.1111/jfbc.12782 PMID:31353585 DOI: https://doi.org/10.1111/jfbc.12782
Al-Sheddi ES, Al-Zaid NA, Al-Oqail MM, Al-Massarani SM, El-Gamal AA, Farshori NN. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm J. 2019;27(7):1053-1060. https://doi.org/10.1016/j.jsps.2019.09.001 PMID:31997913 DOI: https://doi.org/10.1016/j.jsps.2019.09.001
Nam HH, Nan L, Choo BK. Anti-inflammation and protective effects of Anethum graveolens L. (Dill seeds) on esophageal mucosa damages in reflux esophagitis-induced rats. Foods. 2021;10(10):2500. https://doi.org/10.3390/foods10102500 PMID:34681549 DOI: https://doi.org/10.3390/foods10102500
Mousavi SM, Beatriz Pizarro A, Akhgarjand C, et al. The effects of Anethum graveolens (dill) supplementation on lipid profile and glycemic control: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2022;62(21):5705-5716 https://doi.org/10.1080/10408398.2021.1889459 PMID:33624557 DOI: https://doi.org/10.1080/10408398.2021.1889459
Castro LM, Pinto NB, Moura MQ, et al. Antihelminthic action of the Anethum graveolens essential oil on Haemonchus contortus eggs and larvae. Braz J Biol. 2021;81(1):183-188. https://doi.org/10.1590/1519-6984.225856 PMID:32074174 DOI: https://doi.org/10.1590/1519-6984.225856
Khare CP. Indian herbal remedies: rational Western therapy, ayurvedic and other traditional uses, botany. Springer 2004. DOI: https://doi.org/10.1007/978-3-642-18659-2
Aragona M, Lauriano ER, Pergolizzi S, Faggio C. Opuntia ficus-indica (L.) Miller as a source of bioactivity compounds for health and nutrition. Nat Prod Res. 2018;32(17):2037-2049. https://doi.org/10.1080/14786419.2017.1365073 PMID:28805459 DOI: https://doi.org/10.1080/14786419.2017.1365073
Alimi H, Hfaiedh N, Bouoni Z, et al. Antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis root extract in rats. Phytomedicine. 2010 Dec 1;17(14):1120-6 https://doi.org/10.1016/j.phymed.2010.05.001 DOI: https://doi.org/10.1016/j.phymed.2010.05.001
https://pubmed.ncbi.nlm.nih.gov/20638261/
Trombetta D, Puglia C, Perri D, et al. Effect of polysaccharides from Opuntia ficus-indica (L.) cladodes on the healing of dermal wounds in the rat. Phytomedicine. 2006;13(5):352-358. https://doi.org/10.1016/j.phymed.2005.06.006 PMID:16635743 DOI: https://doi.org/10.1016/j.phymed.2005.06.006
El-Mostafa K, El Kharrassi Y, Badreddine A, et al. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules. 2014;19(9):14879-14901. https://doi.org/10.3390/molecules190914879 PMID:25232708 DOI: https://doi.org/10.3390/molecules190914879
Lee YS, Yang WK, Park YR, et al. Opuntia ficus-indica alleviates particulate matter 10 plus diesel exhaust particles (PM10D)-induced airway inflammation by suppressing the expression of inflammatory cytokines and chemokines. Plants. 2022;11(4):520. https://doi.org/10.3390/plants11040520 PMID:35214853 DOI: https://doi.org/10.3390/plants11040520
Castañeda-Arriaga R, Perez-Gonzalez A, Marino T, Russo N, Galano A. Antioxidants into nopal (Opuntia ficus-indica), important inhibitors of free radicals’ formation. Antioxidants. 2021;10(12):2006. https://doi.org/10.3390/antiox10122006 PMID:34943109 DOI: https://doi.org/10.3390/antiox10122006
Zhou M, Wen C, Ming Y, Zhang L, Lyu X. [Distribution and bioactivity of polyphenols in Opuntia ficus-indica (L. ) Mill]. Wei Sheng Yan Jiu. 2022;51(3):463-469. PMID:35718912
Djobbi B, Miled GLB, Raddadi H, Hassen RB. Efficient removal of aqueous manganese (II) cations by activated Opuntia ficus indica powder: adsorption performance and mechanism. Acta Chim Slov. 2021;68(3):548-561. https://doi.org/10.17344/acsi.2020.6248 PMID:34897526 DOI: https://doi.org/10.17344/acsi.2020.6248
Hussain S, Alamri MS, Mohamed AA, et al. Exploring the role of acacia (Acacia seyal) and cactus (Opuntia ficus-indica) gums on the dough performance and quality attributes of breads and cakes. Foods. 2022;11(9):1208. https://doi.org/10.3390/foods11091208 PMID:35563930 DOI: https://doi.org/10.3390/foods11091208
Amrane-Abider M, Nerín C, Tamendjari A, Serralheiro MLM. Phenolic composition, antioxidant and antiacetylcholinesterase activities of Opuntia ficus-indica peel and flower teas after in vitro gastrointestinal digestion. J Sci Food Agric. 2022;102(11):4401-4409. https://doi.org/10.1002/jsfa.11793 PMID:35075643 DOI: https://doi.org/10.1002/jsfa.11793
Corona-Cervantes K, Parra-Carriedo A, Hernández-Quiroz F, et al. Physical and dietary intervention with Opuntia ficus-indica (nopal) in women with obesity improves health condition through gut microbiota adjustment. Nutrients. 2022;14(5):1008. https://doi.org/10.3390/nu14051008 PMID:35267983 DOI: https://doi.org/10.3390/nu14051008
Liu Z, Zhang J, Zhao Q, Wen A, Li L, Zhang Y. The regulating effect of Tibet Opuntia ficus-indica (Linn.) Mill. polysaccharides on the intestinal flora of cyclophosphamide-induced immunocompromised mice. Int J Biol Macromol. 2022;207:570-579. https://doi.org/10.1016/j.ijbiomac.2022.03.039 PMID:35292280 DOI: https://doi.org/10.1016/j.ijbiomac.2022.03.039
Terzo S, Attanzio A, Calvi P, et al. Indicaxanthin from Opuntia ficus-indica fruit ameliorates glucose dysmetabolism and counteracts insulin resistance in high-fat-diet-fed mice. Antioxidants. 2021;11(1):80. https://doi.org/10.3390/antiox11010080 PMID:35052584 DOI: https://doi.org/10.3390/antiox11010080
Governa P, Marchi M, Cocetta V, et al. Effects of Boswellia Serrata Roxb. and Curcuma longa L. in an in vitro intestinal inflammation model using immune cells and CaCo-2. Pharmaceuticals (Basel). 2018;11(4):126. https://doi.org/10.3390/ph11040126 PMID:30463367 DOI: https://doi.org/10.3390/ph11040126
Catanzaro D, Rancan S, Orso G, et al. Boswellia serrata preserves intestinal epithelial barrier from oxidative and inflammatory damage. PLoS One. 2015;10(5):e0125375. https://doi.org/10.1371/journal.pone.0125375 https://pubmed.ncbi.nlm.nih.gov/25955295/24. Asif M, Jabeen Q, Abdul-Majid AM, Atif M. Diuretic activity of Boswellia serrata Roxb. oleo gum extract in albino rats. Pak J Pharm Sci. 2014;27(6):1811-1817. PMID:25362605 DOI: https://doi.org/10.1371/journal.pone.0125375
Wahab, S.M.; Aboutabl, E.A.; El-Zalabani, S.M.; Fouad, H.A.; De Pooter, H.L.; El-Fallaha, B. The essential oil of olibanum. Planta Med. 1987, 53, 382–384. [CrossRef] https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2006-962745 [PubMed] https://pubmed.ncbi.nlm.nih.gov/17269049/ DOI: https://doi.org/10.1055/s-2006-962745
Sadhasivam S, Palanivel S, Ghosh S. Synergistic antimicrobial activity of Boswellia serrata Roxb. ex Colebr. (Burseraceae) essential oil with various azoles against pathogens associated with skin, scalp and nail infections. Lett Appl Microbiol. 2016;63(6):495-501. https://doi.org/10.1111/lam.12683 PMID:27730658 DOI: https://doi.org/10.1111/lam.12683
Nikam TD, Ghorpade RP, Nitnaware KM, Ahire ML, Lokhande VH, Chopra A. Micropropagation and non-steroidal anti-inflammatory and anti-arthritic agent boswellic acid production in callus cultures of Boswellia serrata Roxb. Physiol Mol Biol Plants. 2013;19(1):105-116. https://doi.org/10.1007/s12298-012-0137-3 PMID:24381442 DOI: https://doi.org/10.1007/s12298-012-0137-3
Pungle P, Banavalikar M, Suthar A, Biyani M, Mengi S. Immunomodulatory activity of boswellic acids of Boswellia serrata Roxb. Indian J Exp Biol. 2003;41(12):1460-1462. PMID:15320503
Almeida-da-Silva CLC, Sivakumar N, Asadi H, et al. Effects of frankincense compounds on infection, inflammation, and oral health. Molecules. 2022;27(13):4174. https://doi.org/10.3390/molecules27134174 PMID:35807419 DOI: https://doi.org/10.3390/molecules27134174
Siddiqui MZ. Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci. 2011;73(3):255-261. PMID:22457547
Shen T, Li GH, Wang XN, Lou HX. The genus Commiphora: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol. 2012;142(2):319-330. https://doi.org/10.1016/j.jep.2012.05.025 PMID:22626923 DOI: https://doi.org/10.1016/j.jep.2012.05.025
Al-Robai SA, Ahmed AA, Mohamed HA, Ahmed AA, Zabin SA, Alghamdi AA. Qualitative and quantitative ethnobotanical survey in Al Baha province, southwestern Saudi Arabia. Diversity. 2022 Oct 13;14(10):867. DOI: https://doi.org/10.3390/d14100867
https://www.mdpi.com/1424-2818/14/10/867 CrossRef
Galehdari H, Negahdari S, Kesmati M, Rezaie A, Shariati G. Effect of the herbal mixture composed of Aloe Vera, Henna, Adiantum capillus-veneris, and Myrrha on wound healing in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2016;16(1):386. https://doi.org/10.1186/s12906-016-1359-7 PMID:27716154 DOI: https://doi.org/10.1186/s12906-016-1359-7
Madia VN, De Angelis M, De Vita D, et al. Oil and its main components for antiviral activity. Investigation of Commiphora myrrha (Nees) Engl. Pharmaceuticals (Basel). 2021;14(3):243. https://doi.org/10.3390/ph14030243 PMID:33803165 DOI: https://doi.org/10.3390/ph14030243
Hwang YH, Lee A, Kim T, Jang SA, Ha H. Anti-osteoporotic effects of Commiphora myrrha and its poly-saccharide via osteoclastogenesis inhibition. Plants. 2021;10(5):945. https://doi.org/10.3390/plants10050945 PMID:34068461 DOI: https://doi.org/10.3390/plants10050945
Ge CY, Zhang JL. Bioactive sesquiterpenoids and steroids from the resinous exudates of Commiphora myrrha. Nat Prod Res. 2019;33(3):309-315. https://doi.org/10.1080/14786419.2018.1448811 PMID:29533080 DOI: https://doi.org/10.1080/14786419.2018.1448811
Germano A, Occhipinti A, Barbero F, Maffei ME. A pilot study on bioactive constituents and analgesic effects of MyrLiq®, a Commiphora myrrha extract with a high furanodiene content. BioMed Res Int. 2017;2017:3804356. https://doi.org/10.1155/2017/3804356 PMID:28626756 DOI: https://doi.org/10.1155/2017/3804356
Sotoudeh R, Hadjzadeh MA, Gholamnezhad Z, Aghaei A. The anti-diabetic and antioxidant effects of a combination of Commiphora mukul, Commiphora myrrha and Terminalia chebula in diabetic rats. Avicenna J Phytomed. 2019;9(5):454-464. PMID:31516859
Orabi SH, Al-Sabbagh ES, Khalifa HK, et al. Commiphora myrrha resin alcoholic extract ameliorates high fat diet induced obesity via regulation of UCP1 and adiponectin proteins expression in rats. Nutrients. 2020;12(3):803. https://doi.org/10.3390/nu12030803 PMID:32197395 DOI: https://doi.org/10.3390/nu12030803
Ahmad A, Raish M, Ganaie MA, et al. Hepatoprotective effect of Commiphora myrrha against d-GalN/LPS-induced hepatic injury in a rat model through attenuation of pro inflammatory cytokines and related genes. Pharm Biol. 2015;53(12):1759-1767. https://doi.org/10.3109/13880209.2015.1005754 PMID:25864920 DOI: https://doi.org/10.3109/13880209.2015.1005754
Anonymous. Standardisation of single drugs of Unani medicine. 1st ed. Part II. New Delhi: CCRUM; 1992. https://books.google.com.sa/books?id=C08aPwAACAAJ&printsec=frontcover&dq=editions:LCCN87901749&hl=ar
Usmani MI. Tanqeeh ul Mufradat. 1st ed. New Delhi: Famous Offset Press; 2007:229-230. https://www.amazon.in/Tanqeeh-Mufradat-Muhammad-Imran-Usmani/dp/B0BSGPRHKY/ref=monarch_sidesheet_title
Ibn-e-Rushd AWM. Kitab ul Kulliyat. 2nd ed. CCRUM; 1987:79-81.
Ahmad Al-Undulisi ZA. Al-Jami ul Mufaradat ul Advia Wa Al-Aghziya IB. Vol IV. 2nd ed. New Delhi: CCRUM; 2003:316-320. https://www.rekhta.org/ebooks/detail/al-jama-ul-mufradat-al-adviya-wal-aghziya-ziyauddin-abdullah-bin-ahmad-al-undulisi-ebooks
Wildner G. Tumors, tumor therapies, autoimmunity and the eye. Autoimmun Rev. 2021;20(9):102892. https://doi.org/10.1016/j.autrev.2021.102892 PMID:34229046 DOI: https://doi.org/10.1016/j.autrev.2021.102892
Das S, Pineda G, Goff L, Sobel R, Berlin J, Fisher G. The eye of the beholder: orbital metastases from midgut neuroendocrine tumors, a two institution experience. Cancer Imaging. 2018;18(1):47. https://doi.org/10.1186/s40644-018-0181-5 PMID:30522522 DOI: https://doi.org/10.1186/s40644-018-0181-5
Domingo RE, Manganip LE, Castro RM. Tumors of the eye and ocular adnexa at the Philippine Eye Research Institute: a 10-year review. Clin Ophthalmol. 2015;9:1239-1247. https://doi.org/10.2147/OPTH.S87308 PMID:26185414 DOI: https://doi.org/10.2147/OPTH.S87308
Nahon-Esteve S, Martel A, Maschi C, et al. The molecular pathology of eye tumors: A 2019 update main interests for routine clinical practice. Curr Mol Med. 2019;19(9):632-664. https://doi.org/10.2174/1566524019666190726161044 PMID:31418658 DOI: https://doi.org/10.2174/1566524019666190726161044
Collenette S. The ceropegias of Saudi Arabia. Brit Cact Succ J. 1999;17(4):181-187.
Chaudhary A, Mossa JS. Contribution to the flora of Saudi Arabia. Pak J Bot. 1991;23(2):257.82. http://pakbs.org/pjbot/paper_details.php?id=5404
Gillett J. The genus Trifolium in southern Arabia and in Africa south of the Sahara. Kew Bull. 1952;7(3):367-404. https://doi.org/10.2307/4109342 DOI: https://doi.org/10.2307/4109342
U.S. Department of Agriculture. Dr. Duke’s phytochemical and ethnobotanical databases. https://phytochem.nal.usda.gov. Accessed June 2024.
Alsanosy R, Alhazmi HA, Sultana S, et al. Phytochemical screening and cytotoxic properties of ethanolic extract of young and mature khat leaves. J Chem. 2020;1-9. https://doi.org/10.1155/2020/7897435 DOI: https://doi.org/10.1155/2020/7897435
Abdalla AN, Malki WH, Qattan A, Shahid I, Hossain MA, Ahmed M. Chemosensitization of HT29 and HT29-5FU cell lines by a combination of a multi-tyrosine kinase inhibitor and 5FU downregulates ABCC1 and inhibits PIK3CA in light of their importance in Saudi colorectal cancer. Molecules. 2021;26(2):334. https://doi.org/10.3390/molecules26020334 PMID:33440689 DOI: https://doi.org/10.3390/molecules26020334
Abdalla AN, Qattan A, Malki WH, Shahid I, Hossain MA, Ahmed M. Significance of targeting VEGFR-2 and cyclin D1 in luminal-A breast cancer. Molecules. 2020;25(20):4606. https://doi.org/10.3390/molecules25204606 PMID:33050377 DOI: https://doi.org/10.3390/molecules25204606
Chu LI, Berahim Z, Mohamad S, Shahidan WNS, Yhaya MF, Zainuddin SLA. Phytochemical compounds of raw versus methanol-extracted Kelulut, Tualang, and Manuka honeys. Cureus. 2023;15(4):e38297. https://doi.org/10.7759/cureus.38297 PMID:37255896 DOI: https://doi.org/10.7759/cureus.38297
Subramenium GA, Swetha TK, Iyer PM, Balamurugan K, Pandian SK. 5-Hydroxymethyl-2-furaldehyde from marine bacterium Bacillus subtilis inhibits biofilm and virulence of Candida albicans. Microbiol Res. 2018;207:19-32. https://doi.org/10.1016/j.micres.2017.11.002 PMID:29458854 DOI: https://doi.org/10.1016/j.micres.2017.11.002
Patil MD, Grogan G, Yun H. Biocatalyzed C-C bond formation for the production of alkaloids. ChemCatChem. 2018;10(21):4783-4804. https://doi.org/10.1002/cctc.201801130 DOI: https://doi.org/10.1002/cctc.201801130
Bogaki T, Mitani K, Oura Y, Ozeki K. Effects of ethyl-α-d-glucoside on human dermal fibroblasts. Biosci Biotechnol Biochem. 2017;81(9):1706-1711. https://doi.org/10.1080/09168451.2017.1353400 PMID:28715254 DOI: https://doi.org/10.1080/09168451.2017.1353400
Aparna V, Dileep KV, Mandal PK, Karthe P, Sadasivan C, Haridas M. Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des. 2012;80(3):434-439. https://doi.org/10.1111/j.1747-0285.2012.01418.x PMID:22642495 DOI: https://doi.org/10.1111/j.1747-0285.2012.01418.x
Ravi L, Krishnan K. Research article cytotoxic potential of N-hexadecanoic acid extracted from Kigelia pinnata leaves. Asian J Cell Biol. 2017;12(1):20-27. https://doi.org/10.3923/ajcb.2017.20.27 DOI: https://doi.org/10.3923/ajcb.2017.20.27
Fernando IPS, Sanjeewa KKA, Ann Y-S, et al. Apoptotic and antiproliferative effects of Stigmast-5-en-3-ol from Dendronephthya gigantea on human leukemia HL-60 and human breast cancer MCF-7 cells. Toxicol In Vitro. 2018;52:297-305. https://doi.org/10.1016/j.tiv.2018.07.007 PMID:30012480 DOI: https://doi.org/10.1016/j.tiv.2018.07.007
Kakuta S, Usutani S, Sirai M, Nagase M. [Selectivity index]. Jpn J Clin Med. 1997;55(suppl 2):610-613. PMID:9172603
Pongprayoon U, Soontornsaratune P, Jarikasem S, Sematong T, Wasuwat S, Claeson P. Topical antiinflammatory activity of the major lipophilic constituents of the rhizome of Zingiber cassumunar. Part I: the essential oil. Phytomedicine. 1997;3(4):319-322. https://doi.org/10.1016/S0944-7113(97)80003-7 PMID:23195188 DOI: https://doi.org/10.1016/S0944-7113(97)80003-7
Cavin A, Hostettmann K, Dyatmyko W, Potterat O. Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med. 1998;64(5):393-396. https://doi.org/10.1055/s-2006-957466 PMID:17253260 DOI: https://doi.org/10.1055/s-2006-957466
Shin J, Song M-H, Yu J-W, et al. Anticancer potential of lipophilic constituents of eleven shellfish species commonly consumed in Korea. Antioxidants. 2021;10(10):1629. https://doi.org/10.3390/antiox10101629 PMID:34679763 DOI: https://doi.org/10.3390/antiox10101629
Lukevits E, Demicheva L. Biological activity of furan derivatives. Chem Heterocycl Compd. 1993;29(3):243-267. https://doi.org/10.1007/BF00531499 DOI: https://doi.org/10.1007/BF00531499
Shingalapur RV, Hosamani KM, Keri RS. Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur J Med Chem. 2009;44(10):4244-4248. https://doi.org/10.1016/j.ejmech.2009.05.021 PMID:19540630 DOI: https://doi.org/10.1016/j.ejmech.2009.05.021
Roleira FM, Varela CL, Costa SC, Tavares-da-Silva EJ. Phenolic derivatives from medicinal herbs and plant extracts: anticancer effects and synthetic approaches to modulate biological activity. Studies Nat Prod Chem. 2018;57:115-156. https://doi.org/10.1016/B978-0-444-64057-4.00004-1 DOI: https://doi.org/10.1016/B978-0-444-64057-4.00004-1
Grecco Sdos S, Félix MJ, Lago JH, et al. Anti-trypanosomal phenolic derivatives from Baccharis uncinella. Nat Prod Commun. 2014 Feb;9(2):171-3. PMID: 24689283. DOI: https://doi.org/10.1177/1934578X1400900210
Tracanna MI, Fortuna AM, Cárdenas AV, et al. Anti-leishmanial, anti-inflammatory and antimicrobial activities of phenolic derivatives from Tibouchina paratropica. Phytother Res. 2015;29(3):393-397. https://doi.org/10.1002/ptr.5263 PMID:25417600 DOI: https://doi.org/10.1002/ptr.5263
Woo KW, Kwon OW, Kim SY, et al. Phenolic derivatives from the rhizomes of Dioscorea nipponica and their anti-neuroinflammatory and neuroprotective activities. J Ethnopharmacol. 2014;155(2):1164-1170. https://doi.org/10.1016/j.jep.2014.06.043 PMID:24973689 DOI: https://doi.org/10.1016/j.jep.2014.06.043
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-09-17
Published 2024-10-22