The role of microRNAs in COVID-19 with a focus on miR-200c

Authors

  • Hadi Sodagar Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia - Iran https://orcid.org/0000-0002-6422-6805
  • Shahriar Alipour Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia and Student Research Committee, Urmia University of Medical Sciences, Urmia - Iran https://orcid.org/0000-0002-2202-9598
  • Sepideh Hasani Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia - Iran
  • Shiva Gholizadeh-Ghaleh Aziz Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia - Iran https://orcid.org/0000-0003-1949-4381
  • Mohammad Hasan Khadem Ansari Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia - Iran
  • Rahim Asghari Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia and Hematology, Immune Cell Therapy and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia - Iran

DOI:

https://doi.org/10.33393/jcb.2022.2356

Keywords:

Covid-19, Epigenetic, Lung diseases, miR-200c, miRNAs

Abstract

Objective: Epigenetics is a quickly spreading scientific field, and the study of epigenetic regulation in various diseases such as infectious diseases is emerging. The microribonucleic acids (miRNAs) as one of the types of epigenetic processes bind to their target messenger RNAs (mRNAs) and regulate their stability and/or translation. This study aims to evaluate non-coding RNAs (ncRNAs) with a focus on miR-200c in COVID-19. In this review, we first define the epigenetics and miRNAs, and then the role of miRNAs in diseases focusing on lung diseases is explained. Finally, in this study, we will investigate the role and position of miRNAs with a focus on miR-200c in viral and severe acute respiratory syndrome–related coronavirus (SARS-CoV2) infections.

Methods: Systematic search of MEDLINE, PubMed, Web of Science, Embase, and Cochrane Library was conducted for all relative papers from 2000 to 2021 with the limitations of the English language. Finally, we selected 128 articles which fit the best to our objective of study, among which 5 articles focused on the impact of miR-200c.

Results: Due to the therapeutic results of various drugs in different races and populations, epigenetic processes, especially miRNAs, are important. The overall results showed that different types of miRNAs can be effective on the process of various lung diseases through different target pathways and genes. It is likely that amplified levels of miR-200c may lead to decreased angiotensin-converting enzyme-2 (ACE2) expression, which in turn may increase the potential of infection, inflammation, and the complications of coronavirus disease.

Conclusion: miR-200c and its correlation with ACE2 can be used as early prognostic and diagnostic markers.

Downloads

Download data is not yet available.

References

Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457-463. https://doi.org/10.1038/nature02625 PMID:15164071

Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3(6):415-428. https://doi.org/10.1038/nrg816 PMID:12042769

Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89-97. https://doi.org/10.1016/j.tibs.2005.12.008 PMID:16403636

Baylin SB, Ohm JE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6(2):107-116. https://doi.org/10.1038/nrc1799PMID:16491070

Jones PA, Laird PW. Cancer epigenetics comes of age. Nat Genet. 1999;21(2):163-167. https://doi.org/10.1038/5947 PMID:9988266

Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350-355. https://doi.org/10.1038/nature02871 PMID:15372042

Jadideslam G, Ansarin K, Sakhinia E, Alipour S, Pouremamali F, Khabbazi A. The microRNA-326: autoimmune diseases, diagnostic biomarker, and therapeutic target. J Cell Physiol. 2018;233(12):9209-9222. https://doi.org/10.1002/jcp.26949 PMID:30078204

Kolahi S, Farajzadeh M-J, Alipour S, et al. Determination of mir-155 and mir-146a expression rates and its association with expression level of TNF-α and CTLA4 genes in patients with Behcet’s disease. Immunol Lett. 2018;204:55-59. https://doi.org/10.1016/j.imlet.2018.10.012PMID:30366049

Shahriar A, Ghaleh-Aziz Shiva G, Ghader B, Farhad J, Hosein A, Parsa H. The dual role of mir-146a in metastasis and disease progression. Biomed Pharmacother. 2020;126:110099. https://doi.org/10.1016/j.biopha.2020.110099 PMID:32179200

Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006;38(6)(suppl):S8-S13. https://doi.org/10.1038/ng1798 PMID:16736023

Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33(4):1290-1297. https://doi.org/10.1093/nar/gki200 PMID:15741182

Karp X, Ambros V. Developmental biology. Encountering microRNAs in cell fate signaling. Science. 2005;310(5752):1288-1289. https://doi.org/10.1126/science.1121566 PMID:16311325

Miska EA. How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev. 2005;15(5):563-568. https://doi.org/10.1016/j.gde.2005.08.005 PMID:16099643

Xu P, Guo M, Hay BA. MicroRNAs and the regulation of cell death. Trends Genet. 2004;20(12):617-624. https://doi.org/10.1016/j.tig.2004.09.010 PMID:15522457

Alshalalfa M, Alhajj R. Using context-specific effect of miRNAs to identify functional associations between miRNAs and gene signatures. BMC Bioinformatics. 2013;14(12)(suppl 12):S1. https://doi.org/10.1186/1471-2105-14-S12-S1 PMID:24267745

Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215-233. https://doi.org/10.1016/j.cell.2009.01.002 PMID 19167326

Cui Q, Yu Z, Purisima EO, Wang E. Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol. 2006;2(1):46. https://doi.org/10.1038/msb4100089PMID:16969338

Barbu MG, Condrat CE, Thompson DC, et al. MicroRNA involvement in signaling pathways during viral infection. Front Cell Dev Biol. 2020;8:143. https://doi.org/10.3389/fcell.2020.00143PMID:32211411

Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev. 2015;81:62-74. https://doi.org/10.1016/j.addr.2014.10.029 PMID:25450260

Nana-Sinkam SP, Geraci MW. MicroRNA in lung cancer. J Thorac Oncol. 2006;1(9):929-931. https://doi.org/10.1097/01243894-200611000-00002 PMID:17409974

Yang N, Coukos G, Zhang L. MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment. Int J Cancer. 2008;122(5):963-968. https://doi.org/10.1002/ijc.23325 PMID:18098137

Blenkiron C, Miska EA. miRNAs in cancer: approaches, aetiology, diagnostics and therapy. Hum Mol Genet. 2007;16(Spec No 1):R106-R113. https://doi.org/10.1093/hmg/ddm056PMID:17613543

Divakaran V, Mann DL. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 2008;103(10):1072-1083. https://doi.org/10.1161/CIRCRESAHA.108.183087PMID:18988904

Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13(4):239-250. https://doi.org/10.1038/nrm3313 PMID:22436747

Sessa R, Hata A. Role of microRNAs in lung development and pulmonary diseases. Pulm Circ. 2013;3(2):315-328. https://doi.org/10.4103/2045-8932.114758 PMID:24015331

Qiu Y-Y, Zhang Y-W, Qian X-F, Bian T. miR-371, miR-138, miR-544, miR-145, and miR-214 could modulate Th1/Th2 balance in asthma through the combinatorial regulation of Runx3. Am J Transl Res. 2017;9(7):3184-3199. PMID:28804539

Yu Y, Wang L, Gu GJCCA. The correlation between Runx3 and bronchial asthma. Clin Chim Acta. 2018;487:75-79. https://doi.org/10.1016/j.cca.2018.09.023

Haj‐Salem I, Fakhfakh R, Bérubé JC, et al. MicroRNA‐19a enhances proliferation of bronchial epithelial cells by targeting TGFβR2 gene in severe asthma. Allergy. 2015;70(2):212-219.

Ezzie ME, Crawford M, Cho J-H, et al. Gene expression networks in COPD: microRNA and mRNA regulation. Thorax. 2012;67(2):122-131. https://doi.org/10.1136/thoraxjnl-2011-200089

Sato T, Liu X, Nelson A, et al. Reduced miR-146a increases prostaglandin E2 in chronic obstructive pulmonary disease fibroblasts. Am J Respir Crit Care Med. 2010;182(8):1020-1029.

Nouws J, Wan F, Finnemore E, et al. MicroRNA miR-24-3p reduces DNA damage responses, apoptosis, and susceptibility to chronic obstructive pulmonary disease. JCI Insight. 2021;6(2). https://doi.org/10.1172/jci.insight.134218

Dang X, Qu X, Wang W, et al. Bioinformatic analysis of microRNA and mRNA Regulation in peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Respir Res. 2017;18(1):1-13. https://doi.org/10.1186/s12931-016-0486-5

Oglesby IK, Bray IM, Chotirmall SH, et al. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression. J Immunol. 2010;184(4):1702-1709.

Gillen AE, Gosalia N, Leir S-H, Harris A. MicroRNA regulation of expression of the cystic fibrosis transmembrane conductance regulator gene. Biochem J. 2011;438(1):25-32. https://doi.org/10.1042/BJ20110672

Sonneville F, Ruffin M, Coraux C, et al. MicroRNA-9 downregulates the ANO1 chloride channel and contributes to cystic fibrosis lung pathology. Nat Commun. 2017;8(1):1-11.

Pandit KV, Corcoran D, Yousef H, et al. Inhibition and role of let-7d in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2010;182(2):220-229. https://doi.org/10.1164/rccm.200911-1698OC

Liu G, Friggeri A, Yang Y, et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010;207(8):1589-1597.

Yang S, Banerjee S, de Freitas A, et al. Participation of miR-200 in pulmonary fibrosis. Am J Pathol. 2012;180(2):484-493. https://doi.org/10.1016/j.ajpath.2011.10.005

Yang G, Yang L, Wang W, Wang J, Wang J, Xu Z. Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene. 2015;562(1):138-144.

Zhang B, Liu T, Wu T, Wang Z, Rao Z, Gao J. microRNA-137 functions as a tumor suppressor in human non-small cell lung cancer by targeting SLC22A18. Int J Biol Macromol. 2015;74:111-118.

Ma Z-L, Hou P-P, Li Y-L, et al. MicroRNA-34a inhibits the proliferation and promotes the apoptosis of non-small cell lung cancer H1299 cell line by targeting TGFβR2. Tumour Biol. 2015;36(4):2481-2490.

Ren X-S, Yin M-H, Zhang X, et al. Tumor-suppressive microRNA-449a induces growth arrest and senescence by targeting E2F3 in human lung cancer cells. Cancer Lett. 2014;344(2):195-203. https://doi.org/10.1016/j.canlet.2013.10.031

Chen J, Hu C, Pan P. Extracellular vesicle microRNA transfer in lung diseases. Front Physiol. 2017;8:1028. https://doi.org/10.3389/fphys.2017.01028 PMID:29311962

Aliotta JM, Pereira M, Wen S, et al. Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res. 2016;110(3):319-330. https://doi.org/10.1093/cvr/cvw054 PMID:26980205

Fujita Y, Araya J, Ito S, et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles. 2015;4(1):28388. https://doi.org/10.3402/jev.v4.28388 PMID:26563733

Lee C, Mitsialis SA, Aslam M, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012;126(22):2601-2611. https://doi.org/10.1161/CIRCULATIONAHA.112.114173PMID:23114789

Fanta CH. Asthma. N Engl J Med. 2009;360(10):1002-1014. https://doi.org/10.1056/NEJMra0804579 PMID:19264689

Martinez-Nunez RT, Louafi F, Sanchez-Elsner T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor α1 (IL13Ralpha1). J Biol Chem. 2011;286(3):1786-1794. https://doi.org/10.1074/jbc.M110.169367 PMID:21097505

Elbehidy RM, Youssef DM, El-Shal AS, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol. 2016;71:107-114. https://doi.org/10.1016/j.molimm.2015.12.015 PMID:26874829

Chiba Y, Tanabe M, Goto K, Sakai H, Misawa M. Down-regulation of miR-133a contributes to up-regulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med. 2009;180(8):713-719. https://doi.org/10.1164/rccm.200903-0325OC PMID:19644046

Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite–induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128(1):160-167. e4. https://doi.org/10.1016/j.jaci.2011.04.005

Wu K-L, Tsai Y-M, Lien C-T, Kuo P-L, Hung AJ. The roles of MicroRNA in lung cancer. Int J Mol Sci. 2019;20(7):1611. https://doi.org/10.3390/ijms20071611 PMID:30935143

Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer. 2010;103(8):1144-1148. https://doi.org/10.1038/sj.bjc.6605901 PMID:20859290

He L, Thomson JM, Hemann MT, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435(7043):828-833.

Chen L, Gibbons DL, Goswami S, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat Commun. 2014;5(1):5241. https://doi.org/10.1038/ncomms6241 PMID:25348003

Osei ET, Florez-Sampedro L, Timens W, Postma DS, Heijink IH, Brandsma C-A. Unravelling the complexity of COPD by microRNAs: it’s a small world after all. Eur Respir J. 2015;46(3):807-818. https://doi.org/10.1183/13993003.02139-2014 PMID:26250493

Hobbs BD, Tantisira KG. MicroRNAs in COPD: small molecules with big potential. Eur Respir J. 2019;53:1900515.

Wang Y, Lyu X, Wu X, Yu L, Hu K. Long non-coding RNA PVT1, a novel biomarker for chronic obstructive pulmonary disease progression surveillance and acute exacerbation prediction potentially through interaction with microRNA-146a. J Clin Lab Anal. 2020;34(8):e23346. https://doi.org/10.1002/jcla.23346 PMID:32342557

Riordan JR, Rommens JM, Kerem B, et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science. 1989;245(4922):1066-1073. https://doi.org/10.1126/science.2475911 PMID:2475911

Oglesby IK, Chotirmall SH, McElvaney NG, Greene CM. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium. J Immunol. 2013;190(7):3354-3362. https://doi.org/10.4049/jimmunol.1202960 PMID:23436935

Ramachandran S, Karp PH, Jiang P, et al. A microRNA network regulates expression and biosynthesis of wild-type and DeltaF508 mutant cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA. 2012;109(33):13362-13367. https://doi.org/10.1073/pnas.1210906109 PMID:22853952

Poy MN, Eliasson L, Krutzfeldt J, et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226-230. https://doi.org/10.1038/nature03076 PMID:15538371

Moschos SA, Williams AE, Perry MM, Birrell MA, Belvisi MG, Lindsay MA. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics. 2007;8(1):240. https://doi.org/10.1186/1471-2164-8-240PMID:17640343

Buggele WA, Johnson KE, Horvath CM. Influenza A virus infection of human respiratory cells induces primary microRNA expression. J Biol Chem. 2012;287(37):31027-31040. https://doi.org/10.1074/jbc.M112.387670 PMID:22822053

Lam W-Y, Yeung AC-M, Ngai KL-K, et al. Effect of avian influenza A H5N1 infection on the expression of microRNA-141 in human respiratory epithelial cells. BMC Microbiol. 2013;13(1):104. https://doi.org/10.1186/1471-2180-13-104 PMID:23663545

Li Y, Li J, Belisle S, Baskin CR, Tumpey TM, Katze MG. Differential microRNA expression and virulence of avian, 1918 reassortant, and reconstructed 1918 influenza A viruses. Virology. 2011;421(2):105-113. https://doi.org/10.1016/j.virol.2011.09.011 PMID:21999992

Baulina NM, Kulakova OG, Favorova OO. MicroRNAs: the role in autoimmune inflammation. Acta Nat (Engl Ed). 2016;8(1):21-33. PMID:27099782

Birkhaug IM, Inchley CS, Aamodt G, Ånestad G, Nystad W, Nakstad B. Infectious burden of respiratory syncytial virus in relation to time of birth modifies the risk of lower respiratory tract infection in infancy: the Norwegian Mother and Child Cohort. Pediatr Infect Dis J. 2013;32(6):e235-e241. https://doi.org/10.1097/INF.0b013e31828ab9ff PMID:23385949

Rossi GA, Silvestri M, Colin AA. Respiratory syncytial virus infection of airway cells: role of microRNAs. Pediatr Pulmonol. 2015;50(7):727-732. https://doi.org/10.1002/ppul.23193PMID:25847505

Głobińska A, Pawełczyk M, Kowalski ML. MicroRNAs and the immune response to respiratory virus infections. Expert Rev Clin Immunol. 2014;10(7):963-971. https://doi.org/10.1586/1744666X.2014.913482 PMID:24784476

Leon-Icaza SA, Zeng M, Rosas-Taraco AG. microRNAs in viral acute respiratory infections: immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019;1(1):1-7. https://doi.org/10.1186/s41544-018-0004-7 PMID:34171007

Gralinski LE, Baric RS. Molecular pathology of emerging coronavirus infections. J Pathol. 2015;235(2):185-195. https://doi.org/10.1002/path.4454 PMID:25270030

Lu D, Chatterjee S, Xiao K, et al. MicroRNAs targeting the SARS-CoV-2 entry receptor ACE2 in cardiomyocytes. J Mol Cell Cardiol. 2020;148:46-49. https://doi.org/10.1016/j.yjmcc.2020.08.017 PMID:32891636

Othumpangat S, Noti JD, Beezhold DH. Lung epithelial cells resist influenza A infection by inducing the expression of cytochrome c oxidase VIc which is modulated by miRNA 4276. Virology. 2014;468-470:256-264. https://doi.org/10.1016/j.virol.2014.08.007 PMID:25203353

Song L, Liu H, Gao S, Jiang W, Huang WJ. Cellular microRNAs inhibit replication of the H1N1 influenza A virus in infected cells. J Virol. 2010;84(17):8849-8860.

Ma YJ, Yang J, Fan XL, et al. Cellular microRNA let-7c inhibits M1 protein expression of the H1N1 influenza A virus in infected human lung epithelial cells. J Cell Mol Med. 2012;16(10):2539-2546. https://doi.org/10.1111/j.1582-4934.2012.01572.x PMID:22452878

Deng Y, Yan Y, Tan KS, et al. MicroRNA-146a induction during influenza H3N2 virus infection targets and regulates TRAF6 levels in human nasal epithelial cells (hNECs). Exp Cell Res. 2017;352(2):184-192.

Tambyah PA, Sepramaniam S, Ali JM, et al. microRNAs in circulation are altered in response to influenza A virus infection in humans. PLoS One. 2013;8(10):e76811.

Xia B, Lu J, Wang R, et al. miR-21-3p regulates influenza A virus replication by targeting histone deacetylase-8. Front Cell Infect Microbiol. 2018;8:175.

Bondanese VP, Francisco-Garcia A, Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World J Biol Chem. 2014;5(4):437.

Ouda R, Onomoto K, Takahasi K, et al. Retinoic acid-inducible gene I-inducible miR-23b inhibits infections by minor group rhinoviruses through down-regulation of the very low density lipoprotein receptor. J Biol Chem. 2011;286(29):26210-26219. https://doi.org/10.1074/jbc.M111.229856

Bakre A, Mitchell P, Coleman JK, et al. Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication. J Gen Virol. 2012;93(Pt 11):2346-2356. https://doi.org/10.1099/vir.0.044255-0

Thornburg NJ, Hayward SL, Crowe Jr. Respiratory syncytial virus regulates human microRNAs by using mechanisms involving beta interferon and NF-κB. mBio. 2012;3(6):e00220-12. https://doi.org/10.1128/mBio.00220-12

Chen X-M, Splinter PL, O'Hara SP, LaRusso NF. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem. 2007;282(39):28929-28938.

Vergoulis T, Vlachos IS, Alexiou P, et al. TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res. 2012;40(D1):D222-D229.

Othumpangat S, Walton C, Piedimonte G. MicroRNA-221 modulates RSV replication in human bronchial epithelium by targeting NGF expression. PLoS One. 2012;7(1):e30030.

Inchley CS, Sonerud T, Fjærli HO, Nakstad B. Nasal mucosal microRNA expression in children with respiratory syncytial virus infection. BMC Infect Dis. 2015;15(1):1-11.

Lai FW, Stephenson KB, Mahony J, Lichty BD. Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-κB activation. J Virol. 2014;88(1):54-65.

Mallick B, Ghosh Z, Chakrabarti J. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS One. 2009;4(11):e7837.

Tahamtan A, Inchley CS, Marzban M, et al. The role of microRNAs in respiratory viral infection: friend or foe? Rev Med Virol. 2016;26(6):389-407. https://doi.org/10.1002/rmv.1894

Zhang X, Chu H, Wen L, et al. Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg Microbes Infect. 2020;9(1):733-746. https://doi.org/10.1080/22221751.2020.1738277

Hasan MM, Akter R, Ullah M, Abedin M, Ullah G, Hossain M. A computational approach for predicting role of human microRNAs in MERS-CoV genome. Adv Bioinformatics. 2014;2014:967946.

Sabbatinelli J, Giuliani A, Matacchione G, et al. Decreased serum levels of the inflammaging marker miR-146a are associated with clinical non-response to tocilizumab in COVID-19 patients. Mech Ageing Dev. 2021;193:111413. https://doi.org/10.1016/j.mad.2020.111413

Chow JT-S, Salmena LJG. Prediction and analysis of SARS-CoV-2-targeting microRNA in human lung epithelium. Genes (Basel). 2020;11(9):1002. https://doi.org/10.3390/genes11091002

Mukhopadhyay D, Mussa BM. Identification of novel hypothalamic microRNAs as promising therapeutics for SARS-CoV-2 by regulating ACE2 and TMPRSS2 expression: an in silico analysis. Brain Sci. 2020;10(10):666.

Mutlu M, Raza U, Saatci Ö. miR-200c: a versatile watchdog in cancer progression, EMT, and drug resistance. J Mol Med (Berl). 2016;94(6):629-644. https://doi.org/10.1007/s00109-016-1420-5 PMID:27094812

Filios SR, Xu G, Chen J, Hong K, Jing G, Shalev A. MicroRNA-200 is induced by thioredoxin-interacting protein and regulates Zeb1 protein signaling and beta cell apoptosis. J Biol Chem. 2014;289(52):36275-36283. https://doi.org/10.1074/jbc.M114.592360 PMID:25391656

Shao X-L, Chen Y, Gao L. MiR-200c suppresses the migration of retinoblastoma cells by reversing epithelial mesenchymal transition. Int J Ophthalmol. 2017;10(8):1195-1202. https://doi.org/10.18240/ijo.2017.08.02 PMID:28861342

Pimenta R, Viana NI, Dos Santos GA, et al. MiR-200c-3p expression may be associated with worsening of the clinical course of patients with COVID-19. Mol Biol Res Commun. 2021;10(3):141-147. PMID:34476267

Liu Q, Du J, Yu X, et al. miRNA-200c-3p is crucial in acute respiratory distress syndrome. Cell Discov. 2017;3(1):17021. https://doi.org/10.1038/celldisc.2017.21 PMID:28690868

Zou Z, Yan Y, Shu Y, et al. Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun. 2014;5(1):3594. https://doi.org/10.1038/ncomms4594PMID:24800825

Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-116. https://doi.org/10.1038/nature03712PMID:16001071

Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838-14843. https://doi.org/10.1074/jbc.M200581200 PMID:11815627

Michel MC, Brunner HR, Foster C, Huo Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol Ther. 2016;164:1-81. https://doi.org/10.1016/j.pharmthera.2016.03.019 PMID:27130806

Chow BS, Allen TJ. Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci (Lond). 2016;130(15):1307-1326. https://doi.org/10.1042/CS20160243PMID:27358027

Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the ACE2/angiotensin 1–7 axis of the renin–angiotensin system in heart failure. Circ Res. 2016;118(8):1313-1326. https://doi.org/10.1161/CIRCRESAHA.116.307708 PMID:27081112

Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. https://doi.org/10.1038/s41591-020-0820-9PMID:32284615

Humphries B, Yang C. The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget. 2015;6(9):6472-6498. https://doi.org/10.18632/oncotarget.3052 PMID:25762624

Benlhabib H, Guo W, Pierce BM, Mendelson CR. The miR-200 family and its targets regulate type II cell differentiation in human fetal lung. J Biol Chem. 2015;290(37):22409-22422. https://doi.org/10.1074/jbc.M114.636068 PMID:26203191

Fosbøl EL, Butt JH, Østergaard L, et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality. JAMA. 2020;324(2):168-177. https://doi.org/10.1001/jama.2020.11301 PMID:32558877

Papannarao JB, Schwenke D, Manning PJ, Katare R. Upregulated miR-200c may increase the risk of obese individuals to severe COVID-19. medRxiv. 2021. https://doi.org/10.1101/2021.03.29.21254517

Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426(6965):450-454. https://doi.org/10.1038/nature02145 PMID:14647384

Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762-768. https://doi.org/10.1093/cid/ciaa248 PMID:32161940

Yang C, Li Y, Xiao S-Y. Differential expression of ACE2 in the respiratory tracts and its relationship to COVID-19 pathogenesis. EBioMedicine. 2020;60:103004. https://doi.org/10.1016/j.ebiom.2020.103004 PMID:32979833

Soltani S, Zandi M. miR-200c-3p upregulation and ACE2 downregulation via bacterial LPS and LTA as nteresting aspects for COVID-19 treatment and immunity. Mol Biol Rep. 2021;48(7):5809-5810. https://doi.org/10.1007/s11033-021-06378-x

Nersisyan S, Shkurnikov M, Turchinovich A, Knyazev E, Tonevitsky A. Integrative analysis of miRNA and mRNA sequencing data reveals potential regulatory mechanisms of ACE2 and TMPRSS2. PLoS One. 2020;15(7):e0235987-e. https://doi.org/10.1371/journal.pone.0235987

Mitra D, Das PM, Huynh FC, Jones FE. Jumonji/ARID1 B (JARID1B) protein promotes breast tumor cell cycle progression through epigenetic repression of microRNA let-7e. J Biol Chem. 2011;286(47):40531-40535. https://doi.org/10.1074/jbc.M111.304865 PMID:21969366

Enkhbaatar Z, Terashima M, Oktyabri D, et al. KDM5B histone demethylase controls epithelial-mesenchymal transition of cancer cells by regulating the expression of the microRNA-200 family. Cell Cycle. 2013;12(13):2100-2112. https://doi.org/10.4161/cc.25142PMID:23759590

Bozgeyik I. Therapeutic potential of miRNAs targeting SARS-CoV-2 host cell receptor ACE2. Meta Gene. 2021;27:100831. https://doi.org/10.1016/j.mgene.2020.100831PMID:33224734

Published

2022-03-21

How to Cite

Sodagar, H., Alipour, S., Hasani, S. ., Gholizadeh-Ghaleh Aziz, S. ., Khadem Ansari, M. H. ., & Asghari, R. . (2022). The role of microRNAs in COVID-19 with a focus on miR-200c. Journal of Circulating Biomarkers, 11(1), 14–23. https://doi.org/10.33393/jcb.2022.2356
Received 2021-11-05
Accepted 2022-02-22
Published 2022-03-21

Metrics