MicroRNAs from urinary exosomes as alternative biomarkers in the differentiation of benign and malignant prostate diseases

Authors

  • Jonas Holdmann Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Witten/Herdecke University, Witten - Germany
  • Lukas Markert Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Witten/Herdecke University, Witten - Germany https://orcid.org/0000-0002-1739-3619
  • Claudia Klinger Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Witten/Herdecke University, Witten and Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten - Germany https://orcid.org/0000-0002-6085-9584
  • Michael Kaufmann Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Witten/Herdecke University, Witten and Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten - Germany https://orcid.org/0000-0001-7595-1386
  • Karin Schork Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum and Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr-University, Bochum - Germany https://orcid.org/0000-0003-3756-4347
  • Michael Turewicz Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum and Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr-University, Bochum - Germany https://orcid.org/0000-0003-0737-1114
  • Martin Eisenacher Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum and Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr-University, Bochum - Germany https://orcid.org/0000-0003-2687-7444
  • Stephan Degener Department of Urology, Helios University Hospital Wuppertal, Center for Clinical and Translational Research, Witten/Herdecke University, Wuppertal - Germany https://orcid.org/0000-0003-4428-7202
  • Nici M. Dreger Department of Urology, Helios University Hospital Wuppertal, Center for Clinical and Translational Research, Witten/Herdecke University, Wuppertal - Germany https://orcid.org/0000-0002-2153-7371
  • Stephan Roth Department of Urology, Helios University Hospital Wuppertal, Center for Clinical and Translational Research, Witten/Herdecke University, Wuppertal - Germany
  • Andreas Savelsbergh Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Witten/Herdecke University, Witten and Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten - Germany https://orcid.org/0000-0002-6136-3230

DOI:

https://doi.org/10.33393/jcb.2022.2317

Keywords:

Biomarker, Extracellular vesicles, Liquid biopsy, microRNA, Prostate cancer, Urine

Abstract

Introduction: Prostate cancer (PCa) is the second most frequently diagnosed cancer and the fifth most cancer-related cause of death worldwide. Various tools are used in the diagnosis of PCa, such as the Prostate-Specific Antigen (PSA) value or digital rectal examination. A final differentiation from benign prostate diseases such as benign prostatic hyperplasia (BPH) can often only be made by a transrectal prostate biopsy. This procedure carries post-procedural complications for the patients and may lead to hospitalization.

Urinary exosomes contain unique components, such as microRNAs (miRNAs) with information about their original tissue. As miRNAs appear to play a role in the development of PCa, they might be useful to develop procedures that could potentially make transrectal biopsies avoidable in certain situations.

Methods: The current study aimed to investigate whether miRNAs from urinary exosomes can be used to differentiate PCa from BPH. For this purpose, urine samples from 28 patients with PCa and 25 patients with BPH were collected and analysed using next-generation sequencing to obtain expression profiles.

Results and conclusion: The two miRNAs hsa-miR-532-3p and hsa-miR-6749-5p showed a significant differential expression within the group of patients with PCa in a training subset of the data containing 32 patients. They were further validated on the independent test data subset containing 20 patients. Additionally, a machine learning algorithm was used to generate a miRNA pattern to distinguish the two disease entities. Both approaches seem to be suitable for the search of alternative diagnostic tools for the differentiation of benign and malignant prostate diseases.

References

  1. McNeal JE. Normal histology of the prostate. Am J Surg Pathol. 1988;12(8):619-633. https://doi.org/10.1097/00000478-198808000-00003 PMID:2456702
  2. Garraway WM, Collins GN, Lee RJ. High prevalence of benign prostatic hypertrophy in the community. Lancet. 1991;338(8765):469-471. https://doi.org/10.1016/0140-6736(91)90543-X PMID:1714529
  3. Egan KB. The epidemiology of benign prostatic hyperplasia associated with lower urinary tract symptoms: prevalence and incident rates. Urol Clin North Am. 2016;43(3):289-297. https://doi.org/10.1016/j.ucl.2016.04.001 PMID:27476122
  4. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249. https://doi.org/10.3322/caac.21660 PMID:33538338
  5. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90. https://doi.org/10.3322/caac.20107 PMID:21296855
  6. European Association of Urology Guidelines. 2020 Edition. Arnhem, The Netherlands: European Association of Urology Guidelines Office; 2020. https://uroweb.org/guideline/prostate-cancer/
  7. Loeb S, Vellekoop A, Ahmed HU, et al. Systematic review of complications of prostate biopsy. Eur Urol. 2013;64(6):876-892. https://doi.org/10.1016/j.eururo.2013.05.049 PMID:23787356
  8. Sharma S, Zapatero-Rodríguez J, O’Kennedy R. Prostate cancer diagnostics: clinical challenges and the ongoing need for disruptive and effective diagnostic tools. Biotechnol Adv. 2017;35(2):135-149. https://doi.org/10.1016/j.biotechadv.2016.11.009 PMID:27939303
  9. Buschow SI, Liefhebber JM, Wubbolts R, Stoorvogel W. Exosomes contain ubiquitinated proteins. Blood Cells Mol Dis. 2005;35(3):398-403. https://doi.org/10.1016/j.bcmd.2005.08.005PMID:16203162
  10. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654-659. https://doi.org/10.1038/ncb1596 PMID:17486113
  11. Nilsson J, Skog J, Nordstrand A, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100(10):1603-1607. https://doi.org/10.1038/sj.bjc.6605058 PMID:19401683
  12. Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92-105. https://doi.org/10.1101/gr.082701.108PMID:18955434
  13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-297. https://doi.org/10.1016/S0092-8674(04)00045-5 PMID:14744438
  14. Marton S, Garcia MR, Robello C, et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia. 2008;22(2):330-338. https://doi.org/10.1038/sj.leu.2405022 PMID:17989717
  15. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008;105(30):10513-10518. https://doi.org/10.1073/pnas.0804549105 PMID:18663219
  16. Mall C, Rocke DM, Durbin-Johnson B, Weiss RH. Stability of miRNA in human urine supports its biomarker potential. Biomarkers Med. 2013;7(4):623-631. https://doi.org/10.2217/bmm.13.44 PMID:23905899
  17. Markert L, Holdmann J, Klinger C, et al. Small RNAs as biomarkers to differentiate benign and malign prostate diseases: an alternative for transrectal punch biopsy of the prostate? PLoS One. 2021;16(3):e0247930. https://doi.org/10.1371/journal.pone.0247930 PMID:33760831
  18. R Core Team. R: A Language and Environment for Statistical Computing. 2019. https://www.r-project.org/
  19. Turewicz M, Kohl M, Ahrens M, et al. BioInfra.Prot: a comprehensive proteomics workflow including data standardization, protein inference, expression analysis and data publication. J Biotechnol. 2017;261:116-125. https://doi.org/10.1016/j.jbiotec.2017.06.005 PMID:28606611
  20. Walker A. openxlsx: Read, Write and Edit XLSX Files. 2019 https://CRAN.R-project.org/package=openxlsx
  21. Kuhn M. caret: Classification and Regression Training. 2019. https://CRAN.R-project.org/package=caret
  22. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8 PMID:25516281
  23. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2016. https://ggplot2.tidyverse.org
  24. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for 'ggplot2'. 2019. https://CRAN.R-project.org/package=cowplot
  25. Slowikowski K. ggrepel: Automatically Position Non-Overlapping Text Labels with 'ggplot2'. 2019. https://CRAN.R-project.org/package=ggrepel
  26. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12(1):77. https://doi.org/10.1186/1471-2105-12-77 PMID:21414208
  27. Breiman L. Random Forests. Mach Learn. 2001;45(1):5-32. https://doi.org/10.1023/A:1010933404324
  28. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18-22.
  29. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Res. 2004;32(Database issue)(suppl 1):D109-D111. https://doi.org/10.1093/nar/gkh023 PMID:14681370
  30. Yamada Y, Arai T, Kato M, et al. Role of pre-miR-532 (miR-532-5p and miR-532-3p) in regulation of gene expression and molecular pathogenesis in renal cell carcinoma. Am J Clin Exp Urol. 2019;7(1):11-30. PMID:30906802
  31. Han J, Wang F, Lan Y, et al. KIFC1 regulated by miR-532-3p promotes epithelial-to-mesenchymal transition and metastasis of hepatocellular carcinoma via gankyrin/AKT signaling. Oncogene. 2019;38(3):406-420. https://doi.org/10.1038/s41388-018-0440-8 PMID:30115976
  32. Gu C, Cai J, Xu Z, et al. MiR-532-3p suppresses colorectal cancer progression by disrupting the ETS1/TGM2 axis-mediated Wnt/β-catenin signaling. Cell Death Dis. 2019;10(10):739. https://doi.org/10.1038/s41419-019-1962-x PMID:31570702
  33. Jiang W, Zheng L, Yan Q, Chen L, Wang X. MiR-532-3p inhibits metastasis and proliferation of non-small cell lung cancer by targeting FOXP3. J BUON. 2019;24(6):2287-2293. PMID:31983096
  34. Andl T, Ganapathy K, Bossan A, Chakrabarti R. MicroRNAs as guardians of the prostate: those who stand before cancer. What do we really know about the role of microRNAs in prostate biology? Int J Mol Sci. 2020;21(13):4796. https://doi.org/10.3390/ijms21134796 PMID:32645914
  35. Guo J, Liu C, Wang W, et al. Identification of serum miR-1915-3p and miR-455-3p as biomarkers for breast cancer. PLoS One. 2018;13(7):e0200716-e. DOI: 10.1371/journal.pone.0200716 PMID 30048472
  36. Li K, Zhu X, Li L, et al. Identification of non-invasive biomarkers for predicting the radiosensitivity of nasopharyngeal carcinoma from serum microRNAs. Sci Rep. 2020;10(1):5161. https://doi.org/10.1038/s41598-020-61958-4 PMID:32198434
  37. Zou X, Li M, Huang Z, et al. Circulating miR-532-502 cluster derived from chromosome X as biomarkers for diagnosis of breast cancer. Gene. 2020;722:144104. https://doi.org/10.1016/j.gene.2019.144104 PMID:31493506
  38. Pospisilova S, Pazourkova E, Horinek A, et al. MicroRNAs in urine supernatant as potential non-invasive markers for bladder cancer detection. Neoplasma. 2016;63(5):799-808. https://doi.org/10.4149/neo_2016_518 PMID:27468885
  39. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8(1):166. https://doi.org/10.1186/1471-2164-8-166PMID:17565689
  40. Thomas CE, Sexton W, Benson K, Sutphen R, Koomen J. Urine collection and processing for protein biomarker discovery and quantification. Cancer Epidemiol Biomarkers Prev. 2010;19(4):953-959. https://doi.org/10.1158/1055-9965.EPI-10-0069 PMID:20332277

Author Biographies

Jonas Holdmann, Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Witten/Herdecke University, Witten - Germany

* Contributed equally

Lukas Markert, Chair for Biochemistry and Molecular Medicine, Division of Functional Genomics, Witten/Herdecke University, Witten - Germany

* Contributed equally