Diagnostic utility of FGF-23 in mineral bone disorder during chronic kidney disease
DOI:
https://doi.org/10.33393/jcb.2022.2328Keywords:
Bone density, CDK, FGF-23Abstract
Our data confirm that intact fibroblast growth factor 23 (iFGF-23) concentration is increased in patients with chronic kidney disease (CKD) and that it increases with disease progression (stages I-V). Therefore, iFGF-23 could be considered an early biomarker in the course of chronic kidney disease-mineral bone disorder (CKD-MBD), which has several aspects that make it potentially useful in clinical practice. The availability of an automated method for iFGF-23 assay may represent an added value in the management of the patient with CKD-MBD already from the early stages of the disease, before the increase of the routinely used laboratory parameters, 1-84 parathyroid hormone (PTH) and 25-OH-vitamin D (25-OH-vitD), which occur in more advanced stages of the disease.
References
Moe S, Drüeke T, Cunningham J, et al; Kidney Disease: Improving Global Outcomes (KDIGO). Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69(11):1945-1953. https://doi.org/10.1038/sj.ki.5000414 PMID:16641930 DOI: https://doi.org/10.1038/sj.ki.5000414
Hu MC, Shiizaki K, Kuro-o M, Moe OW. Fibroblast growth factor 23 and Klotho: physiology and pathophysiology of an endocrine network of mineral metabolism. Annu Rev Physiol. 2013;75(1):503-533. https://doi.org/10.1146/annurev-physiol-030212-183727 PMID:23398153 DOI: https://doi.org/10.1146/annurev-physiol-030212-183727
Ho BB, Bergwitz C. FGF23 signalling and physiology. J Mol Endocrinol. 2021;66(2):R23-R32. https://doi.org/10.1530/JME-20-0178 PMID:33338030 DOI: https://doi.org/10.1530/JME-20-0178
Shimada T, Urakawa I, Isakova T, et al. Circulating fibroblast growth factor 23 in patients with end-stage renal disease treated by peritoneal dialysis is intact and biologically active. J Clin Endocrinol Metab. 2010;95(2):578-585. https://doi.org/10.1210/jc.2009-1603 PMID:19965919 DOI: https://doi.org/10.1210/jc.2009-1603
Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell Metab. 2012;16(6):693-705. https://doi.org/10.1016/j.cmet.2012.11.001 PMID:23217254 DOI: https://doi.org/10.1016/j.cmet.2012.11.001
Wolf M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 2012;82(7):737-747. https://doi.org/10.1038/ki.2012.176 PMID:22622492 DOI: https://doi.org/10.1038/ki.2012.176
Bergwitz C, Jüppner H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med. 2010;61(1):91-104. https://doi.org/10.1146/annurev.med.051308.111339PMID:20059333 DOI: https://doi.org/10.1146/annurev.med.051308.111339
Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79(12):1370-1378. https://doi.org/10.1038/ki.2011.47 PMID:21389978 DOI: https://doi.org/10.1038/ki.2011.47
Isakova T, Xie H, Yang W, et al; Chronic Renal Insufficiency Cohort (CRIC) Study Group. Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA. 2011;305(23):2432-2439. https://doi.org/10.1001/jama.2011.826PMID:21673295 DOI: https://doi.org/10.1001/jama.2011.826
Takashi Y, Fukumoto S. FGF23 beyond Phosphotropic Hormone. Trends Endocrinol Metab. 2018;29(11):755-767. https://doi.org/10.1016/j.tem.2018.08.006 PMID:30217676 DOI: https://doi.org/10.1016/j.tem.2018.08.006
Shimizu Y, Fukumoto S, Fujita T. Evaluation of a new automated chemiluminescence immunoassay for FGF23. J Bone Miner Metab. 2012;30(2):217-221. https://doi.org/10.1007/s00774-011-0306-4 PMID:21898178 DOI: https://doi.org/10.1007/s00774-011-0306-4
Souberbielle JC, Prié D, Piketty ML, et al. Evaluation of a New Fully Automated Assay for Plasma Intact FGF23. Calcif Tissue Int. 2017;101(5):510-518. https://doi.org/10.1007/s00223-017-0307-y PMID:28761972 DOI: https://doi.org/10.1007/s00223-017-0307-y
Napoli C, Casamassimi A, Crudele V, Infante T, Abbondanza C. Kidney and heart interactions during cardiorenal syndrome: a molecular and clinical pathogenic framework. Future Cardiol. 2011;7(4):485-497. https://doi.org/10.2217/fca.11.24 PMID:21797745 DOI: https://doi.org/10.2217/fca.11.24
Vasco M, Benincasa G, Fiorito C, et al. Clinical epigenetics and acute/chronic rejection in solid organ transplantation: an update. Transplant Rev (Orlando). 2021;35(2):100609. https://doi.org/10.1016/j.trre.2021.100609 PMID:33706201 DOI: https://doi.org/10.1016/j.trre.2021.100609
Economidou D, Dovas S, Papagianni A, Pateinakis P, Memmos D. FGF-23 Levels before and after Renal transplantation. J Transplant. 2009;2009:379082. https://doi.org/10.1155/2009/379082PMID:20107581 DOI: https://doi.org/10.1155/2009/379082
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Luisa Albanese, Gemma Caliendo, Giovanna D'Elia, Luana Passariello, Anna Maria Molinari, Claudio Napoli, Maria Teresa Vietri

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors contributing to Journal of Circulating Biomarkers agree to publish their articles under the Creative Common Attribution Non Commercial 4.0 (CC-BY-NC 4.0) license, which allows third parties to re-use the work without permission as long as the work is properly referenced and the use is non-commercial.