Towards a Green Health Technology Assessment: embedding Life Cycle Assessment for sustainable choices

Authors

  • Michela Bobini ALTEMS, Alta Scuola di Economia e Management dei Servizi Sanitari, Università Cattolica del Sacro Cuore, Roma - Italy and CeRGAS, Centre for Research on Health and Social Care Management, SDA Bocconi, Milano - Italy https://orcid.org/0000-0002-3220-4644
  • Eugenio Di Brino ALTEMS, Alta Scuola di Economia e Management dei Servizi Sanitari, Università Cattolica del Sacro Cuore, Roma - Italy and ALTEMS Advisory Spin-off, Università Cattolica del Sacro Cuore, Roma - Italy https://orcid.org/0000-0001-7964-3348
  • Americo Cicchetti Dipartimento di scienze dell’economia e della gestione aziendale, Università Cattolica del Sacro Cuore, Roma - Italy and Direzione generale della programmazione sanitaria, Ministero della Salute - Italy

DOI:

https://doi.org/10.33393/grhta.2025.3399

Keywords:

Environmental sustainability, Health Technology Assessment (HTA), HTA Core Model, Life Cycle Assessment (LCA)

Abstract

The healthcare sector significantly contributes to global greenhouse gas emissions. Among the various strategies available, exploring the integration of environmental sustainability into Health Technology Assessment (HTA) presents a potential avenue for addressing these impacts. The HTA Core Model, widely utilized by European HTA agencies, evaluates healthcare technologies across nine domains; however, environmental considerations remain peripheral and are primarily confined to certain safety-related aspects. This paper examines the potential role of Life Cycle Assessment (LCA) in complementing HTA to better address environmental impacts. LCA offers a systematic methodology to evaluate environmental effects across the full lifecycle of a product, from raw material extraction to disposal. Through the analysis of pharmaceuticals, telemedicine, and surgical practices, the study identifies critical environmental impacts at various lifecycle stages, illustrating how LCA could support more informed and sustainable decision-making in healthcare. These findings underscore the diverse environmental impacts associated with healthcare technologies and highlight the need for tailored strategies to mitigate them. This point of view emphasizes the importance of initiating discussions on developing a framework to incorporate environmental impacts into HTA systematically, promoting healthcare decisions that prioritize both human and environmental healths.

References

  1. Goodland R. The Concept of Environmental Sustainability. Annu Rev Ecol Syst. 1995;26(1):1-24. https://doi.org/10.1146/annurev.es.26.110195.000245 DOI: https://doi.org/10.1146/annurev.es.26.110195.000245
  2. Goodland R, Daly H. Environmental Sustainability: universal and Non‐Negotiable. Ecol Appl. 1996;6(4):1002-1017. https://doi.org/10.2307/2269583 DOI: https://doi.org/10.2307/2269583
  3. WHO. Countries commit to develop climate-smart health care at COP26 UN climate conference. In 2021. Online https://www.who.int/news/item/09-11-2021-countries-commit-to-develop-climate-smart-health-care-at-cop26-un-climate-conference (Accessed November 2024)
  4. Howard C, MacNeill AJ, Hughes F, et al. Learning to treat the climate emergency together: social tipping interventions by the health community. Lancet Planet Health. 2023;7(3):e251-e264. https://doi.org/10.1016/S2542-5196(23)00022-0 PMID:36889866 DOI: https://doi.org/10.1016/S2542-5196(23)00022-0
  5. Pichler PP, Jaccard IS, Weisz U, Weisz H. International comparison of health care carbon footprints. Environ Res Lett. 2019;14(6):064004. https://doi.org/10.1088/1748-9326/ab19e1 DOI: https://doi.org/10.1088/1748-9326/ab19e1
  6. McAlister S, Morton RL, Barratt A. Incorporating carbon into health care: adding carbon emissions to health technology assessments. Lancet Planet Health. 2022;6(12):e993-e999. https://doi.org/10.1016/S2542-5196(22)00258-3 PMID:36495894 DOI: https://doi.org/10.1016/S2542-5196(22)00258-3
  7. Schuitmaker-Warnaar TJ, Fruytier S, Gunn C. OP80 ‘Green Metrics’ - Incorporating Environmental Dimensions In Health Technology Assessment. Int J Technol Assess Health Care. 2022;38(S1):S30-S30. https://doi.org/10.1017/S0266462322001271 DOI: https://doi.org/10.1017/S0266462322001271
  8. Marsh K, Ganz M, Nørtoft E, Lund N, Graff-Zivin J. Incorporating Environmental Outcomes into a Health Economic Model. Int J Technol Assess Health Care. 2016;32(6):400-406. https://doi.org/10.1017/S0266462316000581 PMID:28065172 DOI: https://doi.org/10.1017/S0266462316000581
  9. Polisena J, De Angelis G, Kaunelis D, Gutierrez-Ibarluzea I. Environmental Impact Assessment of a Health Technology: A Scoping Review. Int J Technol Assess Health Care. 2018;34(3):317-326. https://doi.org/10.1017/S0266462318000351 PMID:29897036 DOI: https://doi.org/10.1017/S0266462318000351
  10. Bobini M, Cicchetti A. Integrating environmental sustainability into health technology assessment: an international survey of HTA stakeholders. Int J Technol Assess Health Care. 2024;40(1):e64. https://doi.org/10.1017/S0266462324000631 PMID:39610281 DOI: https://doi.org/10.1017/S0266462324000631
  11. Desterbecq C, Tubeuf S. Inclusion of environmental spillovers in applied economic evaluations of healthcare products: A scoping review. Value Health. 2023;26(8):1270-1281. https://doi.org/10.1016/j.jval.2023.03.008 DOI: https://doi.org/10.1016/j.jval.2023.03.008
  12. Pekarsky BAK. The inclusion of comparative environmental impact in health technology assessment: practical barriers and unintended consequences. Appl Health Econ Health Policy. 2020;18(5):597-599. https://doi.org/10.1007/s40258-020-00578-5 PMID:32377983 DOI: https://doi.org/10.1007/s40258-020-00578-5
  13. Ortsäter G, Borgström F, Baldwin M, Miltenburger C. Incorporating the environmental impact into a budget impact analysis: the example of adopting RESPIMAT® re-usable inhaler. Appl Health Econ Health Policy. 2020;18(3):433-442. https://doi.org/10.1007/s40258-019-00540-0 PMID:31808066 DOI: https://doi.org/10.1007/s40258-019-00540-0
  14. Finnveden G, Hauschild MZ, Ekvall T, et al. Recent developments in Life Cycle Assessment. J Environ Manage. 2009;91(1):1-21. https://doi.org/10.1016/j.jenvman.2009.06.018 PMID:19716647 DOI: https://doi.org/10.1016/j.jenvman.2009.06.018
  15. ISO International Organization for Standardization. ISO 14040: 2006 Environmental management-life cycle assessment- principles and framework. Online https://www.iso.org/standard/37456.html. 2006. https://www.iso.org/standard/37456.html (Accessed November 2024)
  16. Guinée J, Heijungs R. A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere. 1993;26(10):1925-1944. https://doi.org/10.1016/0045-6535(93)90086-K DOI: https://doi.org/10.1016/0045-6535(93)90086-K
  17. Drew J, Christie SD, Rainham D, Rizan C. HealthcareLCA: an open-access living database of health-care environmental impact assessments. Lancet Planet Health. 2022;6(12):e1000-e1012. https://doi.org/10.1016/S2542-5196(22)00257-1 PMID:36495883 DOI: https://doi.org/10.1016/S2542-5196(22)00257-1
  18. Parvatker AG, Tunceroglu H, Sherman JD, et al. Cradle-to-Gate Greenhouse Gas Emissions for Twenty Anesthetic Active Pharmaceutical Ingredients Based on Process Scale-Up and Process Design Calculations. ACS Sustain Chem& Eng. 2019;7(7):6580-6591. https://doi.org/10.1021/acssuschemeng.8b05473 DOI: https://doi.org/10.1021/acssuschemeng.8b05473
  19. Cespi D, Beach ES, Swarr TE, et al. Life cycle inventory improvement in the pharmaceutical sector: assessment of the sustainability combining PMI and LCA tools. Green Chem. 2015;17(6):3390-3400. https://doi.org/10.1039/C5GC00424A DOI: https://doi.org/10.1039/C5GC00424A
  20. Lokmic-Tomkins Z, Davies S, Block LJ, et al. Assessing the carbon footprint of digital health interventions: a scoping review. J Am Med Inform Assoc. 2022;29(12):2128-2139. https://doi.org/10.1093/jamia/ocac196 PMID:36314391 DOI: https://doi.org/10.1093/jamia/ocac196
  21. Savoldelli A, Landi D, Rizzi C. Exploring the Environmental Impact of Telemedicine: A Life Cycle Assessment. In: Hayn D, Pfeifer B, Schreier G, Baumgartner M, eds. Studies in Health Technology and Informatics. [Internet] IOS Press; 2024. Online https://ebooks.iospress.nl/doi/10.3233/SHTI240016. (Accessed November 2024) DOI: https://doi.org/10.3233/SHTI240016
  22. Chang JH, Woo KP, Silva de Souza Lima Cano N, et al. Does reusable mean green? Comparison of the environmental impact of reusable operating room bed covers and lift sheets versus single-use. Surgeon. 2024;22(4):236-241. https://doi.org/10.1016/j.surge.2024.05.003 PMID:38862376 DOI: https://doi.org/10.1016/j.surge.2024.05.003
  23. Donahue LM, Petit HJ, Thiel CL, Sullivan GA, Gulack BC, Shah AN. A Life Cycle Assessment of Reusable and Disposable Surgical Caps. J Surg Res. 2024;299:112-119. https://doi.org/10.1016/j.jss.2024.04.007 PMID:38749314 DOI: https://doi.org/10.1016/j.jss.2024.04.007
  24. Sharma RK, Sarkar P, Singh H. Assessing the sustainability of a manufacturing process using life cycle assessment technique—a case of an Indian pharmaceutical company. Clean Technol Environ Policy. 2020;22(6):1269-1284. https://doi.org/10.1007/s10098-020-01865-4 DOI: https://doi.org/10.1007/s10098-020-01865-4
  25. Janson C, Henderson R, Löfdahl M, Hedberg M, Sharma R, Wilkinson AJK. Carbon footprint impact of the choice of inhalers for asthma and COPD. Thorax. 2020;75(1):82-84. https://doi.org/10.1136/thoraxjnl-2019-213744 PMID:31699805 DOI: https://doi.org/10.1136/thoraxjnl-2019-213744
  26. Sillcox R, Gitonga B, Meiklejohn DA, et al. The environmental impact of surgical telemedicine: life cycle assessment of virtual vs. in-person preoperative evaluations for benign foregut disease. Surg Endosc. 2023;37(7):5696-5702. https://doi.org/10.1007/s00464-023-10131-9 PMID:37237107 DOI: https://doi.org/10.1007/s00464-023-10131-9
  27. Nakarai H, Kwas C, Mai E, et al. What Is the Carbon Footprint of Adult Spinal Deformity Surgery? J Clin Med. 2024;13(13):3731. https://doi.org/10.3390/jcm13133731 PMID:38999297 DOI: https://doi.org/10.3390/jcm13133731
  28. Yang L, Hubert J, Gitundu S, Brovman E, Cobey F. Carbon Footprint of Total Intravenous and Inhalation Anesthesia in the Transcatheter Aortic Valve Replacement Procedure. J Cardiothorac Vasc Anesth. 2024;38(6):1314-1321. https://doi.org/10.1053/j.jvca.2024.02.027 PMID:38490897 DOI: https://doi.org/10.1053/j.jvca.2024.02.027

Most read articles by the same author(s)

<< < 1 2