Relation between interleukin-13 and annexin-V levels and carotid intima-media thickness in nephrotic syndrome
DOI:
https://doi.org/10.33393/jcb.2024.2689Keywords:
Annexin-V, Carotid intima-media thickness, Idiopathic nephrotic syndrome, Interleukin-13Abstract
Background and aim: The aim of the current study is to assess the relation between carotid intima-media thickness (CIMT) measurements, renal Doppler resistive index (RI) and serum levels of interleukin-13 (IL-13) and annexin-V (An-V) in children with idiopathic nephrotic syndrome (INS).
Materials and methods: The present case-control study was conducted on 60 children with INS and 60 age- and sex-matched healthy children. All participants were subjected to evaluation of serum levels of IL-13 and An-V and ultrasound Doppler measurement of CIMT and renal RI.
Results: Patients expressed significantly higher An-V (5.9 ± 2.6 vs. 2.1 ± 0.8 ng/mL, p<0.001) and IL-13 (19.2 ± 7.6 vs. 3.4 ± 1.4 ng/L) levels when compared with healthy counterparts. Moreover, it was shown that patients had significantly higher CIMT (0.49 ± 0.06 vs. 0.35 ± 0.03, p<0.001) as compared to controls. No significant differences were noted between the studied groups regarding right or left RIs. Correlation analysis identified significant direct correlation between serum An-V levels and albumin/creatinine ratio (ACR) (r = 0.55), cholesterol (r = 0.48), triglycerides (r = 0.36), IL-13 (r = 0.92) and CIMT (r = 0.53). Similar correlations could be found between serum IL-13 levels and CIMT measurements and the corresponding parameters.
Conclusions: The present study suggests an association between higher early atherosclerosis expressed as elevated CIMT measurements in children with INS and elevated serum levels of An-V and IL-13.
Downloads
References
Chanchlani R, Parekh RS. Ethnic differences in childhood nephrotic syndrome. Front Pediatr. 2016;4:39. PMID:27148508 https://doi.org/10.3389/fped.2016.00039 PMID:27148508 DOI: https://doi.org/10.3389/fped.2016.00039
Wine R, Vasilevska-Ristovska J, Banh T, et al; H3 Africa Kidney Disease Research Network. Trends in the epidemiology of childhood nephrotic syndrome in Africa: a systematic review. Glob Epidemiol. 2021;3:100061. PMID:37635724 https://doi.org/10.1016/j.gloepi.2021.100061 PMID:37635724 DOI: https://doi.org/10.1016/j.gloepi.2021.100061
Özlü SG, Demircin G, Tökmeci N, et al. Long-term prognosis of idiopathic nephrotic syndrome in children. Ren Fail. 2015;37(4):672-677. PMID:25687382 https://doi.org/10.3109/0886022X.2015.1010940 PMID:25687382 DOI: https://doi.org/10.3109/0886022X.2015.1010940
Carter SA, Mistry S, Fitzpatrick J, et al. Prediction of short- and long-term outcomes in childhood nephrotic syndrome. Kidney Int Rep. 2019;5(4):426-434. PMID:32280840 https://doi.org/10.1016/j.ekir.2019.12.015 PMID:32280840 DOI: https://doi.org/10.1016/j.ekir.2019.12.015
Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr. 2022;181(4):1395-1404. https://doi.org/10.1007/s00431-021-04357-9 PMID:35098401 DOI: https://doi.org/10.1007/s00431-021-04357-9
Guo HL, Li L, Xu ZY, et al. Steroid-resistant nephrotic syndrome in children: a mini-review on genetic mechanisms, predictive biomarkers and pharmacotherapy strategies. Curr Pharm Des. 2021;27(2):319-329. https://doi.org/10.2174/1381612826666201102104412 PMID:33138756 DOI: https://doi.org/10.2174/1381612826666201102104412
da Silva Filha R, Burini K, Pires LG, Brant Pinheiro SV, Simões E Silva AC. Idiopathic nephrotic syndrome in pediatrics: an up-to-date. Curr Pediatr Rev. 2022;18(4):251-264. https://doi.org/10.2174/1573396318666220314142713 PMID:35289253 DOI: https://doi.org/10.2174/1573396318666220314142713
Matera MG, Ora J, Calzetta L, Rogliani P, Cazzola M. Investigational anti IL-13 asthma treatments: a 2023 update. Expert Opin Investig Drugs. 2023;32(5):373-386. PMID:37194672 https://doi.org/10.1080/13543784.2023.2215425 PMID:37194672 DOI: https://doi.org/10.1080/13543784.2023.2215425
Iwaszko M, Biały S, Bogunia-Kubik K. Significance of interleukin (IL)-4 and IL-13 in inflammatory arthritis. Cells. 2021;10(11):3000. PMID:34831223 https://doi.org/10.3390/cells10113000 PMID:34831223 DOI: https://doi.org/10.3390/cells10113000
Shi J, Song X, Traub B, Luxenhofer M, Kornmann M. Involvement of IL-4, IL-13 and their receptors in pancreatic cancer. Int J Mol Sci. 2021;22(6):2998. PMID:33804263 https://doi.org/10.3390/ijms22062998 PMID:33804263 DOI: https://doi.org/10.3390/ijms22062998
Shobeiri SS, Sankian M. Polyvinyl alcohol can stabilize FITC conjugated recombinant annexin V for apoptotic cells detection. Protein Pept Lett. 2022;29(9):806-814. https://doi.org/10.2174/0929866529666220617153809 PMID:35718962 DOI: https://doi.org/10.2174/0929866529666220617153809
Simonsen AC, Boye TL, Nylandsted J. Annexins bend wound edges during plasma membrane repair. Curr Med Chem. 2020;27(22):3600-3610. https://doi.org/10.2174/0929867326666190121121143 PMID:30663559 DOI: https://doi.org/10.2174/0929867326666190121121143
Horimoto AMC, de Jesus LG, de Souza AS, Rodrigues SH, Kayser C. Anti-annexin V autoantibodies and vascular abnormalities in systemic sclerosis: a longitudinal study. Adv Rheumatol. 2020;60(1):38. PMID:32736594 https://doi.org/10.1186/s42358-020-00140-w PMID:32736594 DOI: https://doi.org/10.1186/s42358-020-00140-w
Bratseth V, Margeirsdottir HD, Chiva-Blanch G, et al. Annexin V+ microvesicles in children and adolescents with type 1 diabetes: a prospective cohort study. J Diabetes Res. 2020;2020:7216863. PMID:32309448 https://doi.org/10.1155/2020/7216863 PMID:32309448 DOI: https://doi.org/10.1155/2020/7216863
Hu Y, Liu G, Zhang H, et al. A comparison of [99mTc]duramycin and [99mTc]annexin V in SPECT/CT imaging atherosclerotic plaques. Mol Imaging Biol. 2018;20(2):249-259. PMID:28785938 https://doi.org/10.1007/s11307-017-1111-9 PMID:28785938 DOI: https://doi.org/10.1007/s11307-017-1111-9
Jakubowska A, Kiliś-Pstrusińska K. Annexin V in children with idiopathic nephrotic syndrome treated with cyclosporine A. Adv Clin Exp Med. 2020;29(5):603-609. https://doi.org/10.17219/acem/121519 PMID:32469166 DOI: https://doi.org/10.17219/acem/121519
Ahmed HM, Ameen EE, Awad MS, Botrous OE. Assessment of carotid intima media thickness and left ventricular mass index in children with idiopathic nephrotic syndrome. Vasc Health Risk Manag. 2021;17:349-356. https://doi.org/10.2147/VHRM.S295868 PMID:34140775 DOI: https://doi.org/10.2147/VHRM.S295868
Hyla-Klekot L, Bryniarski P, Pulcer B, Ziora K, Paradysz A. Dimethylarginines as risk markers of atherosclerosis and chronic kidney disease in children with nephrotic syndrome. Adv Clin Exp Med. 2015;24(2):307-314. PMID:25931365 https://doi.org/10.17219/acem/40465 PMID:25931365 DOI: https://doi.org/10.17219/acem/40465
Vaziri ND. HDL abnormalities in nephrotic syndrome and chronic kidney disease. Nat Rev Nephrol. 2016;12(1):37-47. PMID:26568191 https://doi.org/10.1038/nrneph.2015.180 PMID:26568191 DOI: https://doi.org/10.1038/nrneph.2015.180
Geraci G, Buccheri D, Zanoli L, et al. Renal haemodynamics and coronary atherosclerotic burden are associated in patients with hypertension and mild coronary artery disease. Exp Ther Med. 2019;17(4):3255-3263. https://doi.org/10.3892/etm.2019.7279 PMID:30906482 DOI: https://doi.org/10.3892/etm.2019.7279
Youssef DM, Fawzy FM. Value of renal resistive index as an early marker of diabetic nephropathy in children with type-1 diabetes mellitus. Saudi J Kidney Dis Transpl. 2012;23(5):985-992. PMID:22982911 https://doi.org/10.4103/1319-2442.100880 PMID:22982911 DOI: https://doi.org/10.4103/1319-2442.100880
Moriconi D, Mengozzi A, Duranti E, et al. The renal resistive index is associated with microvascular remodeling in patients with severe obesity. J Hypertens. 2023;41(7):1092-1099. https://doi.org/10.1097/HJH.0000000000003434 PMID:37071436 DOI: https://doi.org/10.1097/HJH.0000000000003434
Ghafori M, Rashedi A, Montazeri M, Amirkhanlou S. The relationship between Renal Arterial Resistive Index (RRI) and renal outcomes in patients with resistant hypertension. Iran J Kidney Dis. 2020;14(6):448-453. PMID:33277448 PMID:33277448
Provenzano M, Rivoli L, Garofalo C, et al. Renal resistive index in chronic kidney disease patients: possible determinants and risk profile. PLoS One. 2020;15(4):e0230020. https://doi.org/10.1371/journal.pone.0230020 PMID:32236125 DOI: https://doi.org/10.1371/journal.pone.0230020
Primary nephrotic syndrome in children: clinical significance of histopathologic variants of minimal change and of diffuse mesangial hypercellularity. A report of the International Study of Kidney Disease in Children. Kidney Int. 1981;20(6):765-771. https://doi.org/10.1038/ki.1981.209 PMID:7334749 DOI: https://doi.org/10.1038/ki.1981.209
Trautmann A, Vivarelli M, Samuel S, et al; International Pediatric Nephrology Association. IPNA clinical practice recommendations for the diagnosis and management of children with steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2020;35(8):1529-1561. https://doi.org/10.1007/s00467-020-04519-1 PMID:32382828 DOI: https://doi.org/10.1007/s00467-020-04519-1
Flynn JT, Kaelber DC, Baker-Smith CM, et al; SUBCOMMITTEE ON SCREENING AND MANAGEMENT OF HIGH BLOOD PRESSURE IN CHILDREN. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics. 2017;140(3):e20171904. https://doi.org/10.1542/peds.2017-1904 PMID:28827377 DOI: https://doi.org/10.1542/peds.2017-3035
Hooman N, Isa-Tafreshi R, Otukesh H, Mostafavi SH, Hallaji F. Carotid artery function in children with idiopathic nephrotic syndrome. Nefrologia. 2013;33(5):650-656. https://doi.org/10.3265/Nefrologia.pre2013.May.12036 PMID:24089156
Youssef DM, Gomaa MA, El-Akhras A, et al. Brachial artery flow-mediated dilatation and carotid intima-media thickness in children with idiopathic nephrotic syndrome. Iran J Kidney Dis. 2018;12(6):331-340. PMID:30595562 PMID:30595562
Skrzypczyk P, Kuźma-Mroczkowska E, Kułagowska J, Brzewski M, Okarska-Napierała M, Pańczyk-Tomaszewska M. Carotid intima-media thickness in children with idiopathic nephrotic syndrome: a single center cross-sectional study. Clin Nephrol. 2019;91(6):353-362. https://doi.org/10.5414/CN109617 PMID:31079597 DOI: https://doi.org/10.5414/CN109617
Paripović A, Stajić N, Putnik J, Gazikalović A, Bogdanović R, Vladislav V. Evaluation of carotid intima media thickness in children with idiopathic nephrotic syndrome. Nephrol Ther. 2020;16(7):420-423. https://doi.org/10.1016/j.nephro.2020.09.004 PMID:33162364 DOI: https://doi.org/10.1016/j.nephro.2020.09.004
Kamel AS, AlGhawass MME, Sayed MA, Roby SA. Evaluation of carotid intima media thickness in children with idiopathic nephrotic syndrome. Ital J Pediatr. 2022;48(1):195. https://doi.org/10.1186/s13052-022-01383-7 PMID:36494853 DOI: https://doi.org/10.1186/s13052-022-01383-7
Kniazewska MH, Obuchowicz AK, Wielkoszyński T, et al. Atherosclerosis risk factors in young patients formerly treated for idiopathic nephrotic syndrome. Pediatr Nephrol. 2009;24(3):549-554. https://doi.org/10.1007/s00467-008-1029-1 PMID:18972136 DOI: https://doi.org/10.1007/s00467-008-1029-1
Rahul I, Krishnamurthy S, Satheesh S, Biswal N, Bobby Z, Lakshminarayanan S. Brachial artery flow-mediated dilatation and carotid intima medial thickness in pediatric nephrotic syndrome: a cross-sectional case-control study. Clin Exp Nephrol. 2015;19(1):125-132. https://doi.org/10.1007/s10157-014-0958-1 PMID:24639030 DOI: https://doi.org/10.1007/s10157-014-0958-1
Simsek B, Buyukcelik M, Soran M, et al. Urinary annexin V in children with nephrotic syndrome: a new prognostic marker? Pediatr Nephrol. 2008;23(1):79-82. https://doi.org/10.1007/s00467-007-0606-z PMID:17999093 DOI: https://doi.org/10.1007/s00467-007-0606-z
Ye Q, Zhang Y, Zhuang J, et al. The important roles and molecular mechanisms of annexin A2 autoantibody in children with nephrotic syndrome. Ann Transl Med. 2021;9(18):1452. https://doi.org/10.21037/atm-21-3988 PMID:34734004 DOI: https://doi.org/10.21037/atm-21-3988
Bilgir O, Vural HA, Bilgir F, Akan OY, Demir I. Serum annexin V and anti-annexin V levels and their relationship with metabolic parameters in patients with type 2 diabetes. Rev Assoc Med Bras (1992). 2019 Sep 12;65(8):1042-1047. doi: 10.1590/1806-9282.65.8.1042. DOI: https://doi.org/10.1590/1806-9282.65.8.1042
Lai KW, Wei CL, Tan LK, et al. Overexpression of interleukin-13 induces minimal-change-like nephropathy in rats. J Am Soc Nephrol. 2007;18(5):1476-1485. https://doi.org/10.1681/ASN.2006070710 PMID:17429054 DOI: https://doi.org/10.1681/ASN.2006070710
Kimata H, Fujimoto M, Furusho K. Involvement of interleukin (IL)-13, but not IL-4, in spontaneous IgE and IgG4 production in nephrotic syndrome. Eur J Immunol. 1995;25(6):1497-1501. https://doi.org/10.1002/eji.1830250604 PMID:7614976 DOI: https://doi.org/10.1002/eji.1830250604
Low LD, Lu L, Chan CY, et al. IL-13-driven alterations in hepatic cholesterol handling contributes to hypercholesterolemia in a rat model of minimal change disease. Clin Sci (Lond). 2020;134(2):225-237. https://doi.org/10.1042/CS20190961 PMID:31934720 DOI: https://doi.org/10.1042/CS20190961
Le Floc’h A, Allinne J, Nagashima K, et al. Dual blockade of IL-4 and IL-13 with dupilumab, an IL-4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy. 2020;75(5):1188-1204. PMID:31838750 https://doi.org/10.1111/all.14151 PMID:31838750 DOI: https://doi.org/10.1111/all.14151
Pelaia C, Pelaia G, Crimi C, et al. Biological therapy of severe asthma with dupilumab, a dual receptor antagonist of interleukins 4 and 13. Vaccines (Basel). 2022;10(6):974. PMID:35746582 https://doi.org/10.3390/vaccines10060974 PMID:35746582 DOI: https://doi.org/10.3390/vaccines10060974
Kariyawasam HH. Chronic rhinosinusitis with nasal polyps: mechanistic insights from targeting IL-4 and IL-13 via IL-4Rα inhibition with dupilumab. Expert Rev Clin Immunol. 2020;16(12):1115-1125. PMID:33148074 https://doi.org/10.1080/1744666X.2021.1847083 PMID:33148074 DOI: https://doi.org/10.1080/1744666X.2021.1847083
Gulleroglu K, Yazar B, Sakalli H, Ozdemir H, Baskin E. Clinical importance of mean platelet volume in children with nephrotic syndrome. Ren Fail. 2014;36(5):663-665. https://doi.org/10.3109/0886022X.2014.883931 PMID:24512186 DOI: https://doi.org/10.3109/0886022X.2014.883931
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Asmaa Elsehmawy, Rasha Mahmoud Gouda, Fatma Elzhraa Ahmed Diab, Ola Ismail Saleh, Heba Mohamed Galal, Mona Gamal El Din Al Anany, Salwa Samir Abd Elgwad, Marwa Mohsen Hassan, Mohamed Ahmed Mostafa Kamal Ahmed, Ahmed Yousri Elamir
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors contributing to Journal of Circulating Biomarkers agree to publish their articles under the Creative Common Attribution Non Commercial 4.0 (CC-BY-NC 4.0) license, which allows third parties to re-use the work without permission as long as the work is properly referenced and the use is non-commercial.
Accepted 2024-05-16
Published 2024-06-18