Exploring the in vitro anti-diabetic potential and in silico studies of 2, 3 and 2, 6-dichloroIndolinone
DOI:
https://doi.org/10.33393/dti.2025.3271Keywords:
2, 3 and 2, 6-dichloroIndolinone, α-glucosidase/α-amylase inhibition, Molecular docking, Molecular simulationAbstract
Introduction: Adequate hyperglycemic control is still a huge challenge with the clinically used therapeutics. New, more effective anti-diabetic agents are on the top list of drug discovery projects.
Methods: This article deals with the in vitro anti-diabetic potential of 2, 3 dichloroIndolinone (C1) and 2, 6-dichloroIndolinone (C2) on α-glucosidase and α-amylase followed by in silico analysis.
Results: Both compounds, C-1 and C-2, caused significant inhibition of α-glucosidase at various test concentrations with IC50 of 35.266 μM and 38. 379 μM, respectively. Similarly, compounds C-1 and C-2 elicited significant anti-α-amylase action with IC50 values of 42.449 μM and 46.708 μM, respectively. The molecular docking investigation regarding the α-glucosidase and α-amylase binding site was implemented to attain better comprehension with respect to the pattern in which binding mechanics occur between the C1 and C2 molecules and the active sites, which illustrated a higher binding efficacy in appraisal with reference inhibitor and acarbose. The interactions between the active compounds C1 and C2 with the active site residues were mainly polar bonds, hydrogen bonding, π−π, and π−H interactions, which contributed to a strong alignment with the enzyme backbone. Similarly, effective binding is frequently indicated by a strong and stable hydrogen-bonding pattern, which is suggested by the minimal fluctuation in MM-PBSA values.
Conclusion: In short, this study will contribute to providing these compounds with an improved anti-diabetic profile and decreased toxicity.
Downloads
References
Sagbo IJ, van de Venter M, Koekemoer T, et al. In vitro anti-diabetic activity and mechanism of action of Brachylaena elliptica (Thunb.) DC. Evidence-Based Complementary and Alternative Medicine, 2018. https://doi.org/10.1155/2018/4170372 PMID: 30108655 DOI: https://doi.org/10.1155/2018/4170372
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020;21(17):6275. https://doi.org/10.3390/ijms21176275 PMID:32872570 DOI: https://doi.org/10.3390/ijms21176275
Khan MAB, Hashim MJ, King JK, et al. Epidemiology of type 2 diabetes—global burden of disease and forecasted trends. J Epidemiol Glob Health. 2020;10(1):107-111. https://doi.org/10.2991/jegh.k.191028.001 PMID:32175717 DOI: https://doi.org/10.2991/jegh.k.191028.001
Pozzilli P, Di Mario U. Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care. 2001;24(8):1460-1467. https://doi.org/10.2337/diacare.24.8.1460 PMID:11473087 DOI: https://doi.org/10.2337/diacare.24.8.1460
Resnick HE, Howard BV. Diabetes and cardiovascular disease. Annu Rev Med. 2002;53(1):245-267. https://doi.org/10.1146/annurev.med.53.082901.103904 PMID:11818473 DOI: https://doi.org/10.1146/annurev.med.53.082901.103904
Khursheed R, Singh SK, Wadhwa S, et al. Treatment strategies against diabetes: success so far and challenges ahead. Eur J Pharmacol. 2019;862:172625. https://doi.org/10.1016/j.ejphar.2019.172625 PMID:31449807 DOI: https://doi.org/10.1016/j.ejphar.2019.172625
Khetmalis YM, Shivani M, Murugesan S, et al. Oxindole and its derivatives: a review on recent progress in biological activities. Biomed Pharmacother. 2021;141:111842. https://doi.org/10.1016/j.biopha.2021.111842 PMID:34174506 DOI: https://doi.org/10.1016/j.biopha.2021.111842
Gassman PG, Van Bergen T. General method for the synthesis of oxindoles. J Am Chem Soc. 1973;95(8):2718-2719. https://doi.org/10.1021/ja00789a070 DOI: https://doi.org/10.1021/ja00789a070
Mukhliss L, Taha M, Rahim F, et al. Synthesis and novel structural hybrid analogs of oxindole derivatives bearing piperidine ring, their antidiabetics II activity and molecular docking study. J Mol Struct. 2025;1332:141666. doi:10.1016/j.molstruc.2025.141666 DOI: https://doi.org/10.1016/j.molstruc.2025.141666
Pirzada AS, Khan H, Alam W, et al. Physicochemical properties, pharmacokinetic studies, DFT approach, and antioxidant activity of nitro and chloro indolinone derivatives. Front Chem. 2024;12:1360719. https://doi.org/10.3389/fchem.2024.1360719 PMID:38562526 DOI: https://doi.org/10.3389/fchem.2024.1360719
Ahmad I, Khan H, Serdaroğlu G. Physicochemical properties, drug likeness, ADMET, DFT studies, and in vitro antioxidant activity of oxindole derivatives. Comput Biol Chem. 2023;104:107861. https://doi.org/10.1016/j.compbiolchem.2023.107861 PMID:37060784 DOI: https://doi.org/10.1016/j.compbiolchem.2023.107861
Kadhim MM, Heravi MRP, Mohammadi-Aghdam S, et al. Investigation of anti-tumor (E)-3-X-oxindole via functionalization of C20 nano structure: A DFT approach. Comput Theor Chem. 2022;1214:113763. doi:10.1016/j.comptc.2022.113763 DOI: https://doi.org/10.1016/j.comptc.2022.113763
Khan M, Yousaf M, Wadood A, et al. Discovery of novel oxindole derivatives as potent α-glucosidase inhibitors. Bioorg Med Chem. 2014;22(13):3441-3448. https://doi.org/10.1016/j.bmc.2014.04.033 PMID:24825482 DOI: https://doi.org/10.1016/j.bmc.2014.04.033
Altowyan MS, Barakat A, Al-Majid AM, et al. Spiroindolone analogues as potential hypoglycemic with dual inhibitory activity on α-amylase and α-glucosidase. Molecules. 2019;24(12):2342. https://doi.org/10.3390/molecules24122342 PMID:31242688 DOI: https://doi.org/10.3390/molecules24122342
Rauf A, Khan H, Khan M, et al. In Silico, Swiss ADME, and DFT studies of newly synthesized oxindole derivatives followed by antioxidant studies. J Chem. 2023;2023(1):5553913. https://doi.org/10.1155/2023/5553913 DOI: https://doi.org/10.1155/2023/5553913
Huneif MA, Alshehri DB, Alshaibari KS, et al. Design, synthesis and bioevaluation of new vanillin hybrid as multitarget inhibitor of α-glucosidase, α-amylase, PTP-1B and DPP4 for the treatment of type-II diabetes. Biomed Pharmacother. 2022;150:113038. https://doi.org/10.1016/j.biopha.2022.113038 PMID:35658208 DOI: https://doi.org/10.1016/j.biopha.2022.113038
Taha M, Ismail NH, Khan A, et al. Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies. Bioorg Med Chem Lett. 2015;25(16):3285-3289. https://doi.org/10.1016/j.bmcl.2015.05.069 PMID:26077497 DOI: https://doi.org/10.1016/j.bmcl.2015.05.069
Irfan A, Faisal S, Ahmad S, et al. Structure-based virtual screening of furan-1, 3, 4-oxadiazole tethered N-phenylacetamide derivatives as novel class of hTYR and hTYRP1 inhibitors. pharmaceuticals, 2023, 16, (3), 344. https://doi.org/10.3390/ph16030344 DOI: https://doi.org/10.3390/ph16030344
Nahoum V, Roux G, Anton V, et al. Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem J. 2000;346(Pt 1):201-208. https://doi.org/10.1042/bj3460201 PMID:10657258 DOI: https://doi.org/10.1042/bj3460201
Yamamoto K, Miyake H, Kusunoki M, et al. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS J. 2010;277(20):4205-4214. https://doi.org/10.1111/j.1742-4658.2010.07810.x PMID:20812985 DOI: https://doi.org/10.1111/j.1742-4658.2010.07810.x
Schenone M, Dančík V, Wagner BK, et al. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol. 2013;9(4):232-240. https://doi.org/10.1038/nchembio.1199 PMID:23508189 DOI: https://doi.org/10.1038/nchembio.1199
Rindhe SS, Karale BK, Gupta RC, et al. Synthesis, antimicrobial and antioxidant activity of some oxindoles. Indian J Pharm Sci. 2011;73(3):292-296. PMID:22457553
Qi Y, Gong H, Wang Z, et al. Discovery of novel oxindole derivatives as TRPA1 antagonists with potent analgesic activity for pain treatment. Bioorganic Chemistry 154, 108088. DOI: https://doi.org/10.1016/j.bioorg.2024.108088
Casirola DM, Ferraris RP. α-Glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism. 2006;55(6):832-841. https://doi.org/10.1016/j.metabol.2006.02.011 PMID:16713445 DOI: https://doi.org/10.1016/j.metabol.2006.02.011
Derosa G, Maffioli P. α-Glucosidase inhibitors and their use in clinical practice. Arch Med Sci. 2012;8(5):899-906. https://doi.org/10.5114/aoms.2012.31621 PMID:23185202 DOI: https://doi.org/10.5114/aoms.2012.31621
Thilagam E, Parimaladevi B, Kumarappan C, et al. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J Acupunct Meridian Stud. 2013;6(1):24-30. https://doi.org/10.1016/j.jams.2012.10.005 PMID:23433052 DOI: https://doi.org/10.1016/j.jams.2012.10.005
de Souza PM, de Oliveira Magalhães P. Application of microbial α-amylase in industry - a review. Braz J Microbiol. 2010;41(4), 850-861. https://doi.org/10.1590/s1517-83822010000400004 PMID: 24031565 DOI: https://doi.org/10.1590/S1517-83822010000400004
Qin X, Ren L, Yang X, et al. Structures of human pancreatic α-amylase in complex with acarviostatins: implications for drug design against type II diabetes. J Struct Biol. 2011;174(1):196-202. https://doi.org/10.1016/j.jsb.2010.11.020 PMID:21111049 DOI: https://doi.org/10.1016/j.jsb.2010.11.020
Jayaraj S, Suresh S, Kadeppagari RK. Amylase inhibitors and their biomedical applications. Stärke. 2013;65(7‐8):535-542. https://doi.org/10.1002/star.201200194 DOI: https://doi.org/10.1002/star.201200194
Azam SS, Uddin R, Wadood A. Structure and dynamics of alpha-glucosidase through molecular dynamics simulation studies. J Mol Liq. 2012;174:58-62. https://doi.org/10.1016/j.molliq.2012.07.003 DOI: https://doi.org/10.1016/j.molliq.2012.07.003
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 The Authors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2025-02-04
Published 2025-03-10