Tuberculosis research: Quo vadis

Authors

DOI:

https://doi.org/10.33393/dti.2024.3076

Abstract

Despite 142 years of ongoing research, since Robert Koch discovered the tuberculosis (TB) bacillus, TB continues to flourish in the most vulnerable parts of the globe in Asia, Africa and South America. Indeed, progressive socio-economic measures (nutrition, housing and environment) have shown to be more effective than research in disease elimination in affluent areas of the globe. Undoubtedly, however, areas undertaken in recent research studies underscore new knowledge that may yield far-reaching impact on disease control, if not elimination. This editorial aims to highlight such specific studies and their impact.

Downloads

Download data is not yet available.

References

World Health Organization (WHO). Global tuberculosis report, 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023. Accessed 21 February 2024.

McKeown T, Record RG. Reasons for the decline of mortality in England and Wales during the nineteenth century. Population Studies. 1962;16(2):94-122. https://doi.org/10.1080/00324728.1962.10414870 DOI: https://doi.org/10.1080/00324728.1962.10414870

Bhargava A, Pai M, Bhargava M, Marais BJ, Menzies D. Can social interventions prevent tuberculosis?: The Papworth experiment (1918-1943) revisited. Am J Respir Crit Care Med. 2012;186(5):442-449. https://doi.org/10.1164/rccm.201201-0023OC PMID:22773730 DOI: https://doi.org/10.1164/rccm.201201-0023OC

Shin S, Furin J, Bayona J, Mate K, Kim JY, Farmer P. Community-based treatment of multidrug-resistant tuberculosis in Lima, Peru: 7 years of experience. Soc Sci Med. 2004;59(7):1529-1539. https://doi.org/10.1016/j.socscimed.2004.01.027 PMID:15246180 DOI: https://doi.org/10.1016/j.socscimed.2004.01.027

McKeown T. The modern rise of population. Edward Arnold; 1976. DOI: https://doi.org/10.2307/1971906

Bhargava A, Bhargava M, Meher A, et al. Nutritional support for adult patients with microbiologically confirmed pulmonary tuberculosis: outcomes in a programmatic cohort nested within the RATIONS trial in Jharkhand, India. Lancet Glob Health. 2023;11(9):e1402-e1411. https://doi.org/10.1016/S2214-109X(23)00324-8 PMID:37567210 DOI: https://doi.org/10.1016/S2214-109X(23)00324-8

Dimala CA, Kadia BM. A systematic review and meta-analysis on the association between ambient air pollution and pulmonary tuberculosis. Sci Rep. 2022;12(1):11282. https://doi.org/10.1038/s41598-022-15443-9 PMID:35788679 DOI: https://doi.org/10.1038/s41598-022-15443-9

Aditama W, Sitepu FY, Saputra R. Relationship between physical condition of house environment and the incidence of pulmonary tuberculosis, Aceh, Indonesia. Int J Sci Health Res. 2019;4(1):227-231.

Gandhi NR, Moll A, Sturm AW, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006;368(9547):1575-1580. https://doi.org/10.1016/S0140-6736(06)69573-1 PMID:17084757 DOI: https://doi.org/10.1016/S0140-6736(06)69573-1

Matzaras R, Nikopoulou A, Protonotariou E, Christaki E. Gut microbiota modulation and prevention of dysbiosis as an alternative approach to antimicrobial resistance: a narrative review. Yale J Biol Med. 2022;95(4):479-494. PMID:36568836

Wipperman MF, Fitzgerald DW, Juste MAJ, et al. Antibiotic treatment for tuberculosis induces a profound dysbiosis of the microbiome that persists long after therapy is completed. Sci Rep. 2017;7(1):10767. https://doi.org/10.1038/s41598-017-10346-6 PMID:28883399 DOI: https://doi.org/10.1038/s41598-017-10346-6

Mangwani N, Singh PK, Kumar V. Medicinal plants: adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. J Ayurveda Integr Med. 2020;11(4):522-528. https://doi.org/10.1016/j.jaim.2019.02.004 PMID:31679802 DOI: https://doi.org/10.1016/j.jaim.2019.02.004

Rana HK, Singh AK, Kumar R, Pandey AK. Antitubercular drugs: possible role of natural products acting as antituberculosis medication in overcoming drug resistance and drug-induced hepatotoxicity. Naunyn Schmiedebergs Arch Pharmacol. 2024;397(3):1251-1273. https://doi.org/10.1007/s00210-023-02679-z PMID:37665346 DOI: https://doi.org/10.1007/s00210-023-02679-z

Gautam S, Qureshi KA, Jameel Pasha SB, et al. Medicinal plants as therapeutic alternatives to combat Mycobacterium tuberculosis: a comprehensive review. Antibiotics (Basel). 2023;12(3):541. https://doi.org/10.3390/antibiotics12030541 PMID:36978408 DOI: https://doi.org/10.3390/antibiotics12030541

Williams CML, Cheah ESG, Malkin J, et al. Face mask sampling for the detection of Mycobacterium tuberculosis in expelled aerosols. PLoS One. 2014;9(8):e104921. https://doi.org/10.1371/journal.pone.0104921 PMID:25122163 DOI: https://doi.org/10.1371/journal.pone.0104921

Shaikh A, Sriraman K, Vaswani S, Oswal V, Mistry N. Detection of Mycobacterium tuberculosis RNA in bioaerosols from pulmonary tuberculosis patients. Int J Infect Dis. 2019;86:5-11. https://doi.org/10.1016/j.ijid.2019.06.006 PMID:31202909 DOI: https://doi.org/10.1016/j.ijid.2019.06.006

Wood R, Morrow C, Barry CE III, et al. Real-time investigation of tuberculosis transmission: developing the respiratory aerosol sampling chamber (RASC). PLoS One. 2016;11(1):e0146658. https://doi.org/10.1371/journal.pone.0146658 PMID:26807816 DOI: https://doi.org/10.1371/journal.pone.0146658

Williams CM, Abdulwhhab M, Birring SS, et al. Exhaled Mycobacterium tuberculosis output and detection of subclinical disease by face-mask sampling: prospective observational studies. Lancet Infect Dis. 2020;20(5):607-617. https://doi.org/10.1016/S1473-3099(19)30707-8 PMID:32085847 DOI: https://doi.org/10.1016/S1473-3099(19)30707-8

Derelle R, Lees J, Phelan J, Lalvani A, Arinaminpathy N, Chindelevitch L. fastlin: an ultra-fast program for Mycobacterium tuberculosis complex lineage typing. Bioinformatics. 2023;39(11):btad648. https://doi.org/10.1093/bioinformatics/btad648 PMID:37871178 DOI: https://doi.org/10.1093/bioinformatics/btad648

Hunt M, Bradley P, Lapierre SG, et al. Antibiotic resistance prediction for Mycobacterium tuberculosis from genome sequence data with Mykrobe. Wellcome Open Res. 2019;4:191. https://doi.org/10.12688/wellcomeopenres.15603.1 PMID:32055708 DOI: https://doi.org/10.12688/wellcomeopenres.15603.1

Kohl TA, Utpatel C, Schleusener V, et al. MTBseq: a comprehensive pipeline for whole genome sequence analysis of Mycobacterium tuberculosis complex isolates. PeerJ. 2018;6:e5895. https://doi.org/10.7717/peerj.5895 PMID:30479891 DOI: https://doi.org/10.7717/peerj.5895

Shah S, Shah S, Rangan S, et al. Effect of public-private interface agency in Patna and Mumbai, India: does it alter durations and delays in care seeking for drug-sensitive pulmonary tuberculosis? Gates Open Res. 2020;4:32. DOI: https://doi.org/10.12688/gatesopenres.13113.1

Shewade HD, Frederick A, Kiruthika G, et al. The first differentiated TB care model from India: delays and predictors of losses in the care cascade. Glob Health Sci Pract. 2023;11(2):e2200505. https://doi.org/10.9745/GHSP-D-22-00505 PMID:37116929 DOI: https://doi.org/10.9745/GHSP-D-22-00505

Sarin S, Huddart S, Raizada N, et al. Cost and operational impact of promoting upfront GeneXpert MTB/RIF test referrals for presumptive pediatric tuberculosis patients in India. PLoS One. 2019;14(4):e0214675. https://doi.org/10.1371/journal.pone.0214675 PMID:30933997 DOI: https://doi.org/10.1371/journal.pone.0214675

Shaikh A, Sriraman K, Vaswani S, et al. SMaRT-PCR: sampling using masks and RT-PCR, a non-invasive diagnostic tool for paediatric pulmonary TB. Int J Tuberc Lung Dis. 2024;28(4):189-194. https://doi.org/10.5588/ijtld.23.0291 PMID:38563336 DOI: https://doi.org/10.5588/ijtld.23.0291

Published

2024-05-31

How to Cite

Mistry, N. (2024). Tuberculosis research: Quo vadis. Drug Target Insights, 18(1), 27–29. https://doi.org/10.33393/dti.2024.3076
Received 2024-03-26
Accepted 2024-05-14
Published 2024-05-31

Metrics