Levofloxacin induces erythrocyte contraction leading to red cell death
DOI:
https://doi.org/10.33393/dti.2024.3060Keywords:
Eryptosis, Erythrocyte, Hemolysis, Levofloxacin, Oxidative stressAbstract
Background: Levofloxacin, a fluoroquinolone, is an extensively used antibiotic effective against both positively and negatively staining bacteria. It works by inhibiting bacterial topoisomerase type II and topoisomerase type IV, resulting in impaired DNA synthesis and bacterial cell death. Eryptosis is another term for apoptotic cell death of erythrocyte marked by cell shrinkage, phosphatidylserine (PS) flipping, and membrane blebbing.
Methods: The intent of the present research was to look at the eryptotic effect of levofloxacin by exposing erythrocytes to therapeutical doses (7, 14 µM) of levofloxacin for 48 hours. Cell size evaluation, PS subjection to outside, and calcium channel inhibition were carried out to investigate eryptosis. Oxidative stress generated by levofloxacin was measured as a putative mechanism of eryptosis using glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase activities. Similarly, hemolysis measurements demonstrated levofloxacin’s cytotoxic effect.
Results: Our findings showed that therapeutic doses of levofloxacin can cause a considerable decline in antioxidant enzymes activities, as well as induce cell shrinkage, PS externalization, and hemolysis in erythrocytes. The role of calcium in triggering erythrocyte shrinkage was also confirmed.
Conclusion: In conclusion, our findings showed that the indicated levofloxacin doses caused oxidative stress, which leads to erythrocyte death via eryptosis and hemolysis. These findings emphasize the importance of using levofloxacin with caution and the need for additional research to mitigate these side effects.
References
- Trespalacios-Rangél AA, Otero W, Arévalo-Galvis A, Poutou-Piñales RA, Rimbara E, Graham DY. Surveillance of levofloxacin resistance in Helicobacter pylori isolates in Bogotá-Colombia (2009-2014). PLoS One. 2016;11(7):e0160007. https://doi.org/10.1371/journal.pone.0160007 PMID:27454429 DOI: https://doi.org/10.1371/journal.pone.0160007
- Sitovs A, Sartini I, Giorgi M. Levofloxacin in veterinary medicine: a literature review. Res Vet Sci. 2021;137:111-126. PubMed PMID:33964616 https://doi.org/10.1016/j.rvsc.2021.04.031 PMID:33964616 DOI: https://doi.org/10.1016/j.rvsc.2021.04.031
- Zusso M, Lunardi V, Franceschini D, et al. Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. J Neuroinflammation. 2019;16(1):148. https://doi.org/10.1186/s12974-019-1538-9 PMID:31319868 DOI: https://doi.org/10.1186/s12974-019-1538-9
- Talla V, Veerareddy P. Oxidative stress induced by fluoroquinolones on treatment for complicated urinary tract infections in Indian patients. J Young Pharm. 2011;3(4):304-309. https://doi.org/10.4103/0975-1483.90242 PMID:22224037 DOI: https://doi.org/10.4103/0975-1483.90242
- Abdullah RA, Taee FD, Thanoon IA. Effect of levofloxacin on some body tissues in mice. Iraqi J Vet Sci. 2021;35(1):109-111. https://doi.org/10.33899/ijvs.2020.126416.1316 DOI: https://doi.org/10.33899/ijvs.2020.126416.1316
- Sies H. The concept of oxidative stress after 30 years. In: Gelpi R, Boveris A, Poderoso J, eds. Biochemistry of oxidative stress. Advances in biochemistry in health and disease. vol 16. Cham: Springer; 2016. https://doi.org/10.1007/978-3-319-45865-6_1 DOI: https://doi.org/10.1007/978-3-319-45865-6_1
- Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: an overview on heterocyclic advances and medicinal prospects. Eur J Med Chem. 2020;204:112607. PubMed PMID:32721784 https://doi.org/10.1016/j.ejmech.2020.112607 PMID:32721784 DOI: https://doi.org/10.1016/j.ejmech.2020.112607
- Mani S, Tyagi S, Pal KV, et al. Drug-induced oxidative stress and cellular toxicity. In: Kesari KK, Jha NK, eds. Free radical biology and environmental toxicity. Springer; 2022: 73-113. https://doi.org/10.1007/978-3-030-83446-3_4 DOI: https://doi.org/10.1007/978-3-030-83446-3_4
- Lang F, Jilani K, Lang E. Therapeutic potential of manipulating suicidal erythrocyte death. Expert Opin Ther Targets. 2015;19(9):1219-1227. PubMed PMID:26013571 https://doi.org/10.1517/14728222.2015.1051306 PMID:26013571 DOI: https://doi.org/10.1517/14728222.2015.1051306
- Pyrshev KA, Klymchenko AS, Csúcs G, Demchenko AP. Apoptosis and eryptosis: striking differences on biomembrane level. Biochim Biophys Acta Biomembr. 2018;1860(6):1362-1371. PubMed PMID:29573990 https://doi.org/10.1016/j.bbamem.2018.03.019 PMID:29573990 DOI: https://doi.org/10.1016/j.bbamem.2018.03.019
- Dreischer P, Duszenko M, Stein J, Wieder T. Eryptosis: programmed death of nucleus-free, iron-filled blood cells. Cells. 2022 Feb 1;11(3):503. doi: 10.3390/cells11030503. PMID: 35159312 DOI: https://doi.org/10.3390/cells11030503
- Lang F, Lang KS, Lang PA, Huber SM, Wieder T. Mechanisms and significance of eryptosis. Antioxid Redox Signal. 2006;8(7-8):1183-1192. PubMed PMID:16910766 https://doi.org/10.1089/ars.2006.8.1183 PMID:16910766 DOI: https://doi.org/10.1089/ars.2006.8.1183
- Lang F, Gulbins E, Lerche H, Huber SM, Kempe DS, Foller M. Eryptosis, a window to systemic disease. Cell Physiol Biochem. 2008;22(5-6):373-380. doi: 10.1159/000185448. PMID: 19088418 DOI: https://doi.org/10.1159/000185448
- Pretorius E, du Plooy JN, Bester J. A comprehensive review on eryptosis. Cell Physiol Biochem. 2016;39(5):1977-2000. https://doi.org/10.1159/000447895 PMID:27771701 DOI: https://doi.org/10.1159/000447895
- Fink M, Al Mamun Bhuyan A, Zacharopoulou N, Lang F. Stimulation of eryptosis, the suicidal erythrocyte death, by costunolide. Cell Physiol Biochem. 2018;50(6):2283-2295. https://doi.org/10.1159/000495088 PMID:30423572 DOI: https://doi.org/10.1159/000495088
- Bissinger R, Malik A, Jilani K, Lang F. Triggering of erythrocyte cell membrane scrambling by salinomycin. Basic Clin Pharmacol Toxicol. 2014;115(5):396-402. https://doi.org/10.1111/bcpt.12250 PMID:24717091 DOI: https://doi.org/10.1111/bcpt.12250
- Naveed A, Jilani K, Siddique AB, et al. Induction of erythrocyte shrinkage by omeprazole. Dose Response. 2020 Aug 3;18(3):1559325820946941. doi: 10.1177/1559325820946941. PMID: 32863802 DOI: https://doi.org/10.1177/1559325820946941
- Sattar T, Jilani K, Parveen K, Mushataq Z, Nawaz H, Khan MAB. Induction of erythrocyte membrane blebbing by methotrexate-induced oxidative stress. Dose Response. 2022 Apr 13;20(2):15593258221093853. doi: 10.1177/15593258221093853. PMID: 35449724 DOI: https://doi.org/10.1177/15593258221093853
- Mukhtar F, Jilani K, Bibi I, Mushataq Z, Bari Khan MA, Fatima M. Stimulation of erythrocyte membrane blebbing by bifenthrin induced oxidative stress. Dose Response. 2022 Mar 3;20(1):15593258221076710. doi: 10.1177/15593258221076710. PMID: 35645655 DOI: https://doi.org/10.1177/15593258221076710
- Ilyas S, Jilani K, Sikandar M, et al. Stimulation of erythrocyte membrane blebbing by naproxen sodium. Dose Response. 2020;18(1):1559325819899259. https://doi.org/10.1177/1559325819899259 PMID:31983907 DOI: https://doi.org/10.1177/1559325819899259
- Burger D, Turner M, Xiao F, et al. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia. 2017;60:1791-1800. https://doi.org/10.1007/s00125-017-4331-2 DOI: https://doi.org/10.1007/s00125-017-4331-2
- Shabir K, Jilani K, Zbidah M, et al. Triggering of erythrocyte membrane blebbing by ciprofloxacin. Acta Pol Pharm. 2019;76(5):901-906. https://doi.org/10.32383/appdr/110772 DOI: https://doi.org/10.32383/appdr/110772
- Mischitelli M, Jemaà M, Almasry M, Faggio C, Lang F. Triggering of erythrocyte cell membrane scrambling by emodin. Cell Physiol Biochem. 2016;40(1-2):91-103. https://doi.org/10.1159/000452527 PMID:27855368 DOI: https://doi.org/10.1159/000452527
- Lupescu A, Bissinger R, Jilani K, Lang F. Triggering of suicidal erythrocyte death by celecoxib. Toxins. 2013;5(9):1543-1554. https://doi.org/10.3390/toxins5091543 DOI: https://doi.org/10.3390/toxins5091543
- Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet. 1997;32(2):101-119. PubMed PMID:9068926 https://doi.org/10.2165/00003088-199732020-00002 PMID:9068926 DOI: https://doi.org/10.2165/00003088-199732020-00002
- Vaziri ND, Dicus M, Ho ND, Boroujerdi-Rad L, Sindhu RK. Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int. 2003;63(1):179-185. https://doi.org/10.1046/j.1523-1755.2003.00702.x PMID:12472781 DOI: https://doi.org/10.1046/j.1523-1755.2003.00702.x
- Khan AM, Rampal S, Sood NK. Effect of repeated oral administration of levofloxacin, enrofloxacin, and meloxicam on antioxidant parameters and lipid peroxidation in rabbits. Hum Exp Toxicol. 2017;36(1):42-50. https://doi.org/10.1177/0960327116637111 PMID:26962111 DOI: https://doi.org/10.1177/0960327116637111
- Olayinka ET, Ore A, Ola OS. Influence of different doses of levofloxacin on antioxidant defense systems and markers of renal and hepatic dysfunctions in rats. Adv Toxicol. 2015. https://doi.org/10.1155/2015%2F385023 DOI: https://doi.org/10.1155/2015/385023
- Waggiallah H, Alzohairy M. The effect of oxidative stress on human red cells glutathione peroxidase, glutathione reductase level, and prevalence of anemia among diabetics. N Am J Med Sci. 2011;3(7):344-347. https://doi.org/10.4297/najms.2011.3344 DOI: https://doi.org/10.4297/najms.2011.3344
- Calderón-Salinas JV, Muñoz-Reyes EG, Guerrero-Romero JF, et al. Eryptosis and oxidative damage in type 2 diabetic mellitus patients with chronic kidney disease. Mol Cell Biochem. 2011;357(1-2):171-179. PubMed PMID:21625956 https://doi.org/10.1007/s11010-011-0887-1 PMID:21625956 DOI: https://doi.org/10.1007/s11010-011-0887-1
- Farid AS, Hegazy AM. Ameliorative effects of Moringa oleifera leaf extract on levofloxacin-induced hepatic toxicity in rats. Drug Chem Toxicol. 2020;43(6):616-622. https://doi.org/10.1080/01480545.2019.1574811 PMID:30782023 DOI: https://doi.org/10.1080/01480545.2019.1574811
- Lang KS, Duranton C, Poehlmann H, et al. Cation channels trigger apoptotic death of erythrocytes. Cell Death Differ. 2003;10(2):249-256. https://doi.org/10.1038/sj.cdd.4401144 PMID:12700653 DOI: https://doi.org/10.1038/sj.cdd.4401144
- Charras GT, Coughlin M, Mitchison TJ, Mahadevan L. Life and times of a cellular bleb. Biophys J. 2008 Mar 1;94(5):1836-1853. doi: 10.1529/biophysj.107.113605. PMID: 17921219 DOI: https://doi.org/10.1529/biophysj.107.113605
- Harrison HE, Bunting H, Ordway NK, Albrink WS. The pathogenesis of the renal injury produced in the dog by hemoglobin or methemoglobin. J Exp Med. 1947;86(4):339-356. https://doi.org/10.1084/jem.86.4.339. PMID: 19871682 DOI: https://doi.org/10.1084/jem.86.4.339
- Rapido F. The potential adverse effects of haemolysis. Blood Transfus. 2017 May;15(3):218-221. doi: 10.2450/2017.0311-16. PMID: 28518048