The dark side of drug repurposing. From clinical trial challenges to antimicrobial resistance: analysis based on three major fields
DOI:
https://doi.org/10.33393/dti.2024.3019Keywords:
Thalidomide, Levofloxacin, Minocycline, Doxycycline, Azithromycin, HydroxychloroquineAbstract
Drug repurposing is a strategic endeavor that entails the identification of novel therapeutic applications for pharmaceuticals that are already available in the market. Despite the advantageous nature of implementing this particular strategy owing to its cost-effectiveness and efficiency in reducing the time required for the drug discovery process, it is essential to bear in mind that there are various factors that must be meticulously considered and taken into account. Up to this point, there has been a noticeable absence of comprehensive analyses that shed light on the limitations of repurposing drugs. The primary aim of this review is to conduct a thorough illustration of the various challenges that arise when contemplating drug repurposing from a clinical perspective in three major fields—cardiovascular, cancer, and diabetes—and to further underscore the potential risks associated with the emergence of antimicrobial resistance (AMR) when employing repurposed antibiotics for the treatment of noninfectious and infectious diseases. The process of developing repurposed medications necessitates the application of creativity and innovation in designing the development program, as the body of evidence may differ for each specific case. In order to effectively repurpose drugs, it is crucial to consider the clinical implications and potential drawbacks that may arise during this process. By comprehensively analyzing these challenges, we can attain a deeper comprehension of the intricacies involved in drug repurposing, which will ultimately lead to the development of more efficacious and safe therapeutic approaches.
Downloads
References
Agnihotri Jaya, R Sunanda, Patil et al. “Drug repurposing: A futuristic approach in drug discovery”. Journal of pharmaceutical and biological sciences, vol. 11, no. 1, 66–69, 2023.
Hyeong-Min L, Yuna K. Drug repurposing is a new opportunity for developing drugs against neuropsychiatric disorders. Schizophr Res Treatment. 2016;2016:6378137. DOI: https://doi.org/10.1155/2016/6378137
Meera M, Sekar S, Mahatao R. A novel approach for drug discovery-drug repurposing. Natl J Physiol Pharm Pharmacol. 2022;12(5):546-551. DOI: https://doi.org/10.5455/njppp.2022.12.03127202230032022
Iacopetta D. Special issue on “anticancer drugs activity and underlying mechanisms”. Appl Sci (Basel). 2021;11(17):8169. https://doi.org/10.3390/app11178169 DOI: https://doi.org/10.3390/app11178169
Pardo-Yules B, Gallego-Durán R, Eslam M, et al. Thalidomide with peginterferon alfa-2b and ribavirin in the treatment of non-responders genotype 1 chronic hepatitis C patients: proof of concept. Rev Esp Enferm Dig. 2011;103(12):619-625. https://doi.org/10.4321/S1130-01082011001200003 PMID:22217345 DOI: https://doi.org/10.4321/S1130-01082011001200003
Jesus SM, Santana RS, Leite SN. The organization, weaknesses, and challenges of the control of thalidomide in Brazil: a review. PLoS Negl Trop Dis. 2020;14(8):e0008329. https://doi.org/10.1371/journal.pntd.0008329 PMID:32760161 DOI: https://doi.org/10.1371/journal.pntd.0008329
Duarte D, Vale N. Antidepressant drug sertraline against human cancer cells. Biomolecules. 2022;12(10):1513. https://doi.org/10.3390/biom12101513 PMID:36291722 DOI: https://doi.org/10.3390/biom12101513
Rehan M, Ahmed F, Howladar SM, et al. A computational approach identified andrographolide as a potential drug for suppressing Covid-19-induced cytokine storm. Front Immunol. 2021;12:648250. DOI: https://doi.org/10.3389/fimmu.2021.648250
Talib Jawad Kadhim, Omer Abd Alkareem Khalf. A review search of sildenafil uses in human and in the veterinary medicine. AIP Conf Proc. 2023;2475:100010. DOI: https://doi.org/10.1063/5.0103025
Al Ibrahim AH, Ghallab KQ, Alhumaid FI, et al. A systematic review of sildenafil mortality through the years. Cureus. 2022;14(12):e32179. DOI: https://doi.org/10.7759/cureus.32179
Hussein MA, Salah El-Din MM, Saleh EM, et al. Sildenafil (VIAGRATM): a promising anticancer drug against certain human cancer cell lines. Asian J Chem. 2021;33(6):1420-1424. https://doi.org/10.14233/ajchem.2021.23199 DOI: https://doi.org/10.14233/ajchem.2021.23199
Goldstein I, Burnett AL, Rosen RC, et al. The serendipitous story of sildenafil: an unexpected oral therapy for erectile dysfunction. Sex Med Rev. 2019;7(1):115-128. https://doi.org/10.1016/j.sxmr.2018.06.005 PMID:30301707 DOI: https://doi.org/10.1016/j.sxmr.2018.06.005
Ala M, Jafari RM, Dehpour AR. Sildenafil beyond erectile dysfunction and pulmonary arterial hypertension: thinking about new indications. Fundam Clin Pharmacol. 2021;35(2):235-259,. DOI: https://doi.org/10.1111/fcp.12633
Mpoeo, A Baa, Ky. Hooe peaaee capx eapc (oop). apaoa pecpa eapcex cpec, 2023;12(1):182-190. https://doi.org/10.33380/2305-2066-2023-12-1-182-190 DOI: https://doi.org/10.33380/2305-2066-2023-12-1-182-190
Krishnamurthy N, Grimshaw AA, Axson SA, Choe SH, Miller JE. Drug repurposing: a systematic review on root causes, barriers and facilitators. BMC Health Serv Res. 2022;22(1):1-17. https://doi.org/10.1186/s12913-022-08272-z PMID:34974828 DOI: https://doi.org/10.1186/s12913-022-08272-z
Trivedi J, Mohan M, Byrareddy SN. Drug repurposing approaches to combating viral infections. J Clin Med. 2020;9(11):3777. https://doi.org/10.3390/jcm9113777 PMID:33238464 DOI: https://doi.org/10.3390/jcm9113777
Ekeomodi CC, Obetta KI, Okolocha ML, et al. Computational approaches in drug repurposing. In Rudrapal M, editor, Drug repurposing – advances, scopes and opportunities in drug discovery. IntechOpen; 2023.
Tuerkova A, Zdrazil B. A ligand-based computational drug repurposing pipeline using KNIME and Programmatic Data Access: case studies for rare diseases and COVID-19. J Cheminform. 2020;12(1):71. https://doi.org/10.1186/s13321-020-00474-z PMID:33250934 DOI: https://doi.org/10.1186/s13321-020-00474-z
Jian Hong Gan, Ji Xiang Liu, Yang Liu, et al. DrugRep: an automatic virtual screening server for drug repurposing. Acta Pharmacol Sinica. 2023;44(4):888-896. DOI: https://doi.org/10.1038/s41401-022-00996-2
Sadegh S, Skelton J, Anastasi E, et al. NeDRex – an integrative and interactive network medicine platform for drug repurposing. In RExPO22, The 1st International Conference on Drug Repurposing, Maastricht; 2022. https://doi.org/10.14293/S2199-1006.1.SOR-.PPPY90R8.v1 DOI: https://doi.org/10.14293/S2199-1006.1.SOR-.PPPY90R8.v1
Parmar G, Chudasama JM, Shah A, Patel A. In silico pharmacology and drug repurposing approaches. In Rudrapal M, Khan J, eds, CADD and informatics in drug discovery. Springer; 2023: 253-281. https://doi.org/10.1007/978-981-99-1316-9_11 DOI: https://doi.org/10.1007/978-981-99-1316-9_11
Khan S, Agnihotri J, Patil S, Khan N. Drug repurposing: a futuristic approach in drug discovery. J Pharm Biol Sci. 2023;11(1):66-69. https://doi.org/10.18231/j.jpbs.2023.011 DOI: https://doi.org/10.18231/j.jpbs.2023.011
Geest R, Nijholt D. Hollander W. Clinical Development in Drug Repurposing. In RExPO22, The 1st International Conference on Drug Repurposing, Maastricht; ScienceOpen, August 2022.
Tan GSQ, Sloan EK, Lambert P, Kirkpatrick CMJ, Ilomäki J. Drug repurposing using real-world data. Drug Discov Today. 2023;28(1):103422. https://doi.org/10.1016/j.drudis.2022.103422 PMID:36341896 DOI: https://doi.org/10.1016/j.drudis.2022.103422
Juárez-López D, Schcolnik-Cabrera A. Drug repurposing: considerations to surpass while re-directing old compounds for new treatments. Arch Med Res. 2021;52(3):243-251. https://doi.org/10.1016/j.arcmed.2020.10.021 PMID:33190955 DOI: https://doi.org/10.1016/j.arcmed.2020.10.021
Selvaraj N, Swaroop AK, Nidamanuri BSS, Kumar RR, Natarajan J, Selvaraj J. Network-based drug repurposing: a critical review. Curr Drug Res Rev. 2022;14(2):116-131. https://doi.org/10.2174/2589977514666220214120403 PMID:35156575 DOI: https://doi.org/10.2174/2589977514666220214120403
Farha MA, Brown ED. Drug repurposing for antimicrobial discovery. Nat Microbiol. 2019;4(4):565-577. https://doi.org/10.1038/s41564-019-0357-1 PMID:30833727 DOI: https://doi.org/10.1038/s41564-019-0357-1
Fetro C, Scherman D. Drug repurposing in rare diseases: myths and reality. Therapie. 2020;75(2):157-160. https://doi.org/10.1016/j.therap.2020.02.006 PMID:32241561 DOI: https://doi.org/10.1016/j.therap.2020.02.006
Aggarwal NN, Sindhoor SM, Naveen NR, Gowthami B, Biju P. Drug reprofiling: a prospective approach to battle chronic ailments. J Health Allied Sci 2023;14:38-46. DOI: https://doi.org/10.1055/s-0043-1769903
Annabell C, David R, Greaves R. Drug repurposing in cardiovascular inflammation: successes, failures, and future opportunities. Front Pharmacol. 2022;13:1046406. DOI: https://doi.org/10.3389/fphar.2022.1046406
Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12): 1119-1131. DOI: https://doi.org/10.1056/NEJMoa1707914
Dhimolea E. Canakinumab. MAbs. 2010;2(1):3-13. https://doi.org/10.4161/mabs.2.1.10328 PMID:20065636 DOI: https://doi.org/10.4161/mabs.2.1.10328
Miller J. FDA snubs Novartis bid to repurpose inflammation drug for heart attacks, October 2018. https://www.reuters.com/article/us-novartis-heart-disease/fda-snubs-novartis-bid-to-repurpose-inflammation-drug-for-heart-attacks-idUSKCN1MS2QY/.
Davis JC Jr, Heijde D, Braun J, et al. Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheumatol. 2003;48(11):3230-3236. DOI: https://doi.org/10.1002/art.11325
Gatti J, Lindstrom JA, Beitz J. Reconsideration of 2008 decision: Food and Drug Administration approval of etanercept for systemic treatment of moderate to severe pediatric psoriasis. Pediatr Dermatol. 2018;35(5):688-689. https://doi.org/10.1111/pde.13557 PMID:30066378 DOI: https://doi.org/10.1111/pde.13557
Nathan Mewton, François Roubille, Didier Bresson et al. “Effect of colchicine on myocardial injury in acute myocardial infarction”. Circulation, vol. 144, no. 11, 859–869, 2021..
Shah B, Pillinger M, Zhong H, et al. Effects of acute colchicine administration prior to percutaneous coronary intervention: COLCHICINE-PCI randomized trial. Circ Cardiovasc Interv. 2020;13(4):e008717. https://doi.org/10.1161/CIRCINTERVENTIONS.119.008717 PMID:32295417 DOI: https://doi.org/10.1161/CIRCINTERVENTIONS.119.008717
Tardif J-C, Kouz S, Waters DD, et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 2019;381(26):2497-2505. DOI: https://doi.org/10.1056/NEJMoa1912388
Tong DC, Quinn S, Nasis A, et al. Colchicine in patients with acute coronary syndrome: the Australian COPS randomized clinical trial. Circulation. 2020;142(20):1890-1900. DOI: https://doi.org/10.1161/CIRCULATIONAHA.120.050771
Mewton N, Roubille F, Bresson D, et al. Effect of colchicine on myocardial injury in acute myocardial infarction. Circulation. 2021;144(11):859-869. https://doi.org/10.1161/CIRCULATIONAHA.121.056177 PMID:34420373 DOI: https://doi.org/10.1161/CIRCULATIONAHA.121.056177
Spada A, Emami J, Sanaee F, et al. Design and evaluation of albumin nanoparticles for the delivery of a novel β-tubulin polymerization inhibitor. J Pharm Pharm Sci. 2021;24:344-362. https://doi.org/10.18433/jpps31877 PMID:34224665 DOI: https://doi.org/10.18433/jpps31877
Kaddoura M, AlIbrahim M, Hijazi G, et al. Covid-19 therapeutic options under investigation. Vol 11. In Uckun FMM. Frontiers in pharmacology; 2020. DOI: https://doi.org/10.3389/fphar.2020.01196
Ge P, Fu Y, Qi S, et al. Colchicine for prevention of post-operative atrial fibrillation: meta-analysis of randomized controlled trials. Vol 9. Front Cardiovasc Med. 2022;9:1032116. DOI: https://doi.org/10.3389/fcvm.2022.1032116
Akrami M, Izadpanah P, Bazrafshan M, et al. Effects of colchicine on major adverse cardiac events in next 6-month period after acute coronary syndrome occurrence; a randomized placebo-control trial. BMC Cardiovasc Disord. 2021;21(1):583. https://doi.org/10.1186/s12872-021-02393-9 PMID:34876021 DOI: https://doi.org/10.1186/s12872-021-02393-9
Meyer-Lindemann U, Mauersberger C, Schmidt A, et al. Colchicine impacts leukocyte trafficking in atherosclerosis and reduces vascular inflammation. Front Immunol. 2022;13:898690. DOI: https://doi.org/10.3389/fimmu.2022.898690
Huang W, Wang Y, Tian W, et al. Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics (Basel). 2022;11(10):1380. https://doi.org/10.3390/antibiotics11101380 PMID:36290037 DOI: https://doi.org/10.3390/antibiotics11101380
Zhang F-S, He Q-Z, Qin CH, Little PJ, Weng JP, Xu SW. Therapeutic potential of colchicine in cardiovascular medicine: a pharmacological review. Acta Pharmacol Sin. 2022;43(9):2173-2190. https://doi.org/10.1038/s41401-021-00835-w PMID:35046517 DOI: https://doi.org/10.1038/s41401-021-00835-w
Moreira DM, Vieira JL, Gottschall CA. The effects of METhotrexate therapy on the physical capacity of patients with ISchemic heart failure: a randomized double-blind, placebo-controlled trial (METIS trial). J Card Fail. 2009;15(10):828-834. https://doi.org/10.1016/j.cardfail.2009.06.439 PMID:19944358 DOI: https://doi.org/10.1016/j.cardfail.2009.06.439
Moreira DM, Lueneberg ME, da Silva RL, Fattah T, Gottschall CAM. MethotrexaTE THerapy in ST-segment elevation mYocardial infarctionS: a randomized double-blind, placebo-controlled trial (TETHYS Trial). J Cardiovasc Pharmacol Ther. 2017;22(6):538-545. https://doi.org/10.1177/1074248417699884 PMID:28325070 DOI: https://doi.org/10.1177/1074248417699884
Ridker PM, Everett BM, Pradhan A, et al; CIRT Investigators. Low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;380(8):752-762. https://doi.org/10.1056/NEJMoa1809798 PMID:30415610 DOI: https://doi.org/10.1056/NEJMoa1809798
Borel JF. Comparative study of in vitro and in vivo drug effects on cell-mediated cytotoxicity. Immunology. 1976;31(4):631-641. PMID:824198
Tedesco D, Haragsim L. Cyclosporine: a review. J Transplant. 2012;2012:230386. DOI: https://doi.org/10.1155/2012/230386
Lim SW, Doh KC, Jin L, et al. Oral administration of ginseng ameliorates cyclosporine-induced pancreatic injury in an experimental mouse model. PLoS One. 2013;8(8):e72685. https://doi.org/10.1371/journal.pone.0072685 PMID:24009697 DOI: https://doi.org/10.1371/journal.pone.0072685
Kern G, Mair SM, Noppert SJ, et al. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling. PLoS One. 2014;9(5):e96377. https://doi.org/10.1371/journal.pone.0096377 PMID:24816588 DOI: https://doi.org/10.1371/journal.pone.0096377
Thorat A, Chou H-S, Lee C-F, et al. Effects of converting tacrolimus formulation from twice-daily to once-daily in liver transplantation recipients. BioMed Res Int. 2014;2014:265658. DOI: https://doi.org/10.1155/2014/265658
Abdelkader M, Hilal M, Torky AR, Elsayed H, Allam W. Experimental study of renal toxicity of cyclosporine and the ameliorative effect of N-acetylcysteine in albino rat. Ain Shams J Forensic Med Clin Toxicol. 2021;37(2):8-15. https://doi.org/10.21608/ajfm.2021.174400 DOI: https://doi.org/10.21608/ajfm.2021.174400
Cung T-T, Morel O, Cayla G, et al. Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 2015;373(11):1021-1031. https://doi.org/10.1056/NEJMoa1505489 PMID:26321103 DOI: https://doi.org/10.1056/NEJMoa1505489
Ottani F, Latini R, Staszewsky L, et al; CYCLE Investigators. Cyclosporine A in reperfused myocardial infarction: the multicenter, controlled, open-label CYCLE trial. J Am Coll Cardiol. 2016;67(4):365-374. https://doi.org/10.1016/j.jacc.2015.10.081 PMID:26821623 DOI: https://doi.org/10.1016/j.jacc.2015.10.081
Elgendy A, Alshawadfy E, Altaweel A, Elsaidi A. Cardiovascular and metabolic comorbidities of psoriasis. Dermatol Case Rep. 2016;1(1):1-9. https://doi.org/10.35248/2684-124X.16.1.106 DOI: https://doi.org/10.35248/2684-124X.16.1.106
Sakamoto H, Kurabayashi M. Cardiovascular effects of an immunosuppressive agent cyclosporin A. Int J Immunopathol Pharmacol. 2000;15(2):75-79. https://doi.org/10.1177/039463200201500201 PMID:12590868 DOI: https://doi.org/10.1177/039463200201500201
Grupper A, Shashar M, Bahry D, et al. Cyclosporine attenuates arginine transport, in human endothelial cells, through modulation of cationic amino acid transporter-1. Am J Nephrol. 2013;37(6):613-619. https://doi.org/10.1159/000350614 PMID:23796541 DOI: https://doi.org/10.1159/000350614
Michael AA, Balakrishnan P, Velusamy T. Drug repurposing for hematological malignancies. In Sobti RC, Lal SK, Goyal RK, eds. Drug repurposing for emerging infectious diseases and cancer, Singapore, Springer; 2023:217-252. https://doi.org/10.1007/978-981-19-5399-6_11 DOI: https://doi.org/10.1007/978-981-19-5399-6_11
Ioakeim-Skoufa I, Tobajas-Ramos N, Menditto E, et al. Drug repurposing in oncology: a systematic review of randomized controlled clinical trials. Cancers (Basel). 2023;15(11):2972. https://doi.org/10.3390/cancers15112972 PMID:37296934 DOI: https://doi.org/10.3390/cancers15112972
Issa J-P, Garcia-Manero G, Huang X, et al. Results of phase 2 randomized study of low-dose decitabine with or without valproic acid in patients with myelodysplastic syndrome and acute myelogenous leukemia. Cancer. 2015;121(4):556-561. https://doi.org/10.1002/cncr.29085 PMID:25336333 DOI: https://doi.org/10.1002/cncr.29085
Lübbert M, Grishina O, Schmoor C, et al. Results of the randomized phase II study decider (AMLSG 14-09) comparing decitabine (DAC) with or without valproic acid (VPA) and with or without all-trans retinoic acid (ATRA) add-on in newly diagnosed elderly non-fit AML patients. Blood. 2016;128(22):589. https://doi.org/10.1182/blood.V128.22.589.589 DOI: https://doi.org/10.1182/blood.V128.22.589.589
Tassara M, Döhner K, Brossart P, et al. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients. Blood. 2014;123(26):4027-4036. https://doi.org/10.1182/blood-2013-12-546283 PMID:24797300 DOI: https://doi.org/10.1182/blood-2013-12-546283
Wojcicki AV, Kadapakkam M, Frymoyer A, Lacayo N, Chae HD, Sakamoto KM. Repurposing drugs for acute myeloid leukemia: a worthy cause or a futile pursuit? Cancers (Basel). 2020;12(2):441. https://doi.org/10.3390/cancers12020441 PMID:32069925 DOI: https://doi.org/10.3390/cancers12020441
Zong N, Chowdhury S, Zhou S, et al. Artificial intelligence-based efficacy prediction of phase 3 clinical trial for repurposing heart failure therapies. medRxiv, 2023:2023.05.25.23290531. DOI: https://doi.org/10.1101/2023.05.25.23290531
Turner N, Zeng X-Y, Osborne B, Rogers S, Ye J-M. Repurposing drugs to target the diabetes epidemic. Trends Pharmacol Sci. 2016;37(5):379-389. https://doi.org/10.1016/j.tips.2016.01.007 PMID:26900045 DOI: https://doi.org/10.1016/j.tips.2016.01.007
Mandrup-Poulsen T. Perspective: testing failures. Nature. 2012;485(7398):S17. https://doi.org/10.1038/485S17a PMID:22616101 DOI: https://doi.org/10.1038/485S17a
Mantik KEK, Kim S, Gu B, et al. Repositioning of anti-diabetic drugs against dementia: insight from molecular perspectives to clinical trials. Int J Mol Sci. 2023;24(14):11450. https://doi.org/10.3390/ijms241411450 PMID:37511207 DOI: https://doi.org/10.3390/ijms241411450
Pathak K, Pathak MP, Saikia R, et al. Therapeutic repurposing of antidiabetic drugs in diabetes-associated comorbidities. Curr Drug Ther. 2024;19(2):178-194. DOI: https://doi.org/10.2174/1574885518666230516150404
Haddad F, Dokmak G, Bader M, Karaman R. A comprehensive review on weight loss associated with anti-diabetic medications. Life (Basel). 2023;13(4):1012. https://doi.org/10.3390/life13041012 PMID:37109541 DOI: https://doi.org/10.3390/life13041012
Gussow L. More questions than answers about injectable weight loss drugs. Emerg Med News. 2023;45(7):10. https://doi.org/10.1097/01.EEM.0000945404.71459.8a DOI: https://doi.org/10.1097/01.EEM.0000945404.71459.8a
Natsheh IY, Elkhader MT, Al-Bakheit AA, et al. Inhibition of Acinetobacter baumannii biofilm formation using different treatments of silica nanoparticles. Antibiotics (Basel). 2023;12(9):1365. https://doi.org/10.3390/antibiotics12091365 PMID:37760662 DOI: https://doi.org/10.3390/antibiotics12091365
Wang Y, Lu J, Engelstädter J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation. ISME J. 2020;14(8):2179-2196. https://doi.org/10.1038/s41396-020-0679-2 PMID:32424247 DOI: https://doi.org/10.1038/s41396-020-0679-2
Stevenson C, Hall JP, Harrison E, Wood A, Brockhurst MA. Gene mobility promotes the spread of resistance in bacterial populations. ISME J. 2017;11(8):1930-1932. https://doi.org/10.1038/ismej.2017.42 PMID:28362724 DOI: https://doi.org/10.1038/ismej.2017.42
Gillings MR, Gaze WH, Pruden A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 2015;9(6):1269-1279. DOI: https://doi.org/10.1038/ismej.2014.226
Chawla M, Verma J, Gupta R, Das B. Antibiotic potentiators against multidrug-resistant bacteria: discovery, development, and clinical relevance. Front Microbiol. 2022;13(887251):887251. https://doi.org/10.3389/fmicb.2022.887251 PMID:35847117 DOI: https://doi.org/10.3389/fmicb.2022.887251
Cunningham SA, Rodriguez C, Woerther P-L, et al. In vivo emergence of dual resistance to rifampin and levofloxacin in osteoarticular Cutibacterium avidum. Microbiol Spectr. 2023;11(4):e0368722. DOI: https://doi.org/10.1128/spectrum.03687-22
Dulyayangkul P, Calvopiña K, Heesom KJ, Avison MB. Novel mechanisms of efflux-mediated levofloxacin resistance and reduced amikacin susceptibility in Stenotrophomonas maltophilia. Antimicrob Agents Chemother. 2020;65(1):e01284-20. https://doi.org/10.1128/AAC.01284-20 PMID:33139281 DOI: https://doi.org/10.1128/AAC.01284-20
Zając OM, Tyski S, Laudy AE. The contribution of efflux systems to levofloxacin resistance in Stenotrophomonas maltophilia clinical strains isolated in Warsaw, Poland. Biology (Basel). 2022;11(7):1044. https://doi.org/10.3390/biology11071044 PMID:36101423 DOI: https://doi.org/10.3390/biology11071044
Ramdhani D, Azizah SN, Kusuma SAF, Sediana D. Antibiotic resistance: evaluation of levofloxacin treatment in acute respiratory tract infections cases at the Tasikmalaya City Health Center, Indonesia. J Adv Pharm Technol Res. 2020;11(3):113-116. https://doi.org/10.4103/japtr.JAPTR_17_20 PMID:33102193 DOI: https://doi.org/10.4103/japtr.JAPTR_17_20
Trespalacios-Rangél AA, Otero W, Arévalo-Galvis A, Poutou-Piñales RA, Rimbara E, Graham DY. Surveillance of levofloxacin resistance in Helicobacter pylori isolates in Bogotá-Colombia (2009-2014). PLoS One. 2016;11(7):e0160007. https://doi.org/10.1371/journal.pone.0160007 PMID:27454429 DOI: https://doi.org/10.1371/journal.pone.0160007
Abdelaal AM, Mahmood SS. The role of efflux pump adeJ gene in levofloxacin resistance among A. baumannii. Syst Rev Pharm. 2020;11(10):1105-1110.
Asaduzzaman M, Hasan MZ, Khatun M, et al. Resistance pattern of levofloxacin against uropathogens causing urinary tract infection in selected areas of Dhaka city. Bangladesh J Biol Agric Healthc. 2018;8(4):74-81.
Iskhakova KhI. Antibiotic sensitivity of nonfermenting gram-negative bacteria. Antibiotiki i Khimioterapiia. 1988;33(11):823-827.
Rolinson GN. Bacterial resistance to penicillins and cephalosporins. Proc R Soc Lond, B. 1971;179(1057):403-410. https://doi.org/10.1098/rspb.1971.0105 PMID:4401418 DOI: https://doi.org/10.1098/rspb.1971.0105
Lachmajer-Lutoslawska M, Bobrowski M. Resistance to beta-lactam antibiotics Proteus strains. Acta Microbiol Pol A. 1975;8(3):141-149. PMID:1103580
Chow AW, Patten V, Guze LB. Comparative susceptibility of anaerobic bacteria to minocycline, doxycycline, and tetracycline. Antimicrob Agents Chemother. 1975;7(1):46-49. https://doi.org/10.1128/AAC.7.1.46 PMID:1137358 DOI: https://doi.org/10.1128/AAC.7.1.46
Larsen T. Occurrence of doxycycline resistant bacteria in the oral cavity after local administration of doxycycline in patients with periodontal disease. Scand J Infect Dis. 1991;23(1):89-95. https://doi.org/10.3109/00365549109023379 PMID:2028232 DOI: https://doi.org/10.3109/00365549109023379
Eliopulos N, Alsina L, Diana L, Brandl S. Multiple antimicrobial resistance in Enterobacteriaceae isolated from a Sea Lion (Otaria flavescens) specimen from Isla de Lobos, Uruguay: a case report. Brazilian J Animal Environ Res. 2022;5(4):3477-3486. https://doi.org/10.34188/bjaerv5n4-001 DOI: https://doi.org/10.34188/bjaerv5n4-001
Belousoff MJ, Venugopal H, Wright A, et al. cryoEM-guided development of antibiotics for drug-resistant bacteria. ChemMedChem. 2019;14(5):527-531. https://doi.org/10.1002/cmdc.201900042 PMID:30667174 DOI: https://doi.org/10.1002/cmdc.201900042
Richardson LL. Alternating antibiotics render resistant bacteria beatable. PLOS Biol. 2015;13(4):e1002105. DOI: https://doi.org/10.1371/journal.pbio.1002105
O’neill J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations. In Review on Antimicrobial Resistance. London: Wellcome Trust; 2014.
Song M, Wu H, Wu S, et al. Antibiotic drug levofloxacin inhibits proliferation and induces apoptosis of lung cancer cells through inducing mitochondrial dysfunction and oxidative damage. Biomed Pharmacother. 2016;84:1137-1143. https://doi.org/10.1016/j.biopha.2016.10.034 PMID:27780143 DOI: https://doi.org/10.1016/j.biopha.2016.10.034
Alsalahat I, Al-Majdoub ZM, Taha MO, et al. Inhibition of aggregation of amyloid-β through covalent modification with benzylpenicillin; potential relevance to Alzheimer’s disease. Biochem Biophys Rep. 2021;26:100943. https://doi.org/10.1016/j.bbrep.2021.100943 PMID:33778168 DOI: https://doi.org/10.1016/j.bbrep.2021.100943
Khan AN, Qureshi IA, Khan UK, Uversky VN, Khan RH. Inhibition and disruption of amyloid formation by the antibiotic levofloxacin: a new direction for antibiotics in an era of multi-drug resistance. Arch Biochem Biophys. 2021;714:109077. https://doi.org/10.1016/j.abb.2021.109077 PMID:34728171 DOI: https://doi.org/10.1016/j.abb.2021.109077
Lanckohr C, Bracht H. Antimicrobial stewardship. Curr Opin Crit Care. 2022;28(5):551-556. https://doi.org/10.1097/MCC.0000000000000967 PMID:35942707 DOI: https://doi.org/10.1097/MCC.0000000000000967
Rangapriya M, Lorance A, Varghese AM, Hanif A, Aruna S. Awareness and perception on antibiotics and antimicrobial resistance: a questionnaire based study. Int J Pharm Sci Rev Res. 2020;65(1):27-32. https://doi.org/10.47583/ijpsrr.2020.v65i01.003 DOI: https://doi.org/10.47583/ijpsrr.2020.v65i01.003
Xiang L, Akakuru OU, Xu C, Wu A. Harnessing the intriguing properties of magnetic nanoparticles to detect and treat bacterial infections. Magnetochemistry. 2021;7(8):112. https://doi.org/10.3390/magnetochemistry7080112 DOI: https://doi.org/10.3390/magnetochemistry7080112
Zhu D, Li Q, Shen Y, Zhang Q. Risk factors for quinolone-resistant Escherichia coli infection: a systematic review and meta-analysis. Antimicrob Resist Infect Control. 2020;9:11. DOI: https://doi.org/10.1186/s13756-019-0675-3
Bird SB, Orr PG, Mazzola JL, Brush DE, Boyer EW. Levofloxacin-related seizure activity in a patient with Alzheimer’s disease: assessment of potential risk factors. J Clin Psychopharmacol. 2005;25(3):287-288. https://doi.org/10.1097/01.jcp.0000162811.15066.8e PMID:15876916 DOI: https://doi.org/10.1097/01.jcp.0000162811.15066.8e
Doulberis M, Kotronis G, Gialamprinou D, et al. Alzheimer’s disease and gastrointestinal microbiota; impact of Helicobacter pylori infection involvement. Int J Neurosci. 2021;131(3):289-301. https://doi.org/10.1080/00207454.2020.1738432 PMID:32125206 DOI: https://doi.org/10.1080/00207454.2020.1738432
Mehrotra T, Devi TB, Kumar S, et al. Antimicrobial resistance and virulence in Helicobacter pylori: genomic insights. Genomics. 2021;113(6):3951-3966. https://doi.org/10.1016/j.ygeno.2021.10.002 PMID:34619341 DOI: https://doi.org/10.1016/j.ygeno.2021.10.002
Howard R, Zubko O, Bradley R, et al; Minocycline in Alzheimer Disease Efficacy (MADE) Trialist Group. Minocycline at 2 different dosages vs placebo for patients with mild Alzheimer disease: a randomized clinical trial. JAMA Neurol. 2020;77(2):164-174. https://doi.org/10.1001/jamaneurol.2019.3762 PMID:31738372 DOI: https://doi.org/10.1001/jamaneurol.2019.3762
Gandra S, Mojica N, Klein EY, et al. Trends in antibiotic resistance among major bacterial pathogens isolated from blood cultures tested at a large private laboratory network in India, 2008-2014. Int J Infect Dis. 2016;50(50):75-82. https://doi.org/10.1016/j.ijid.2016.08.002 PMID:27522002 DOI: https://doi.org/10.1016/j.ijid.2016.08.002
Narendrakumar L, Chandrika SK, Thomas S. Adaptive laboratory evolution of Vibrio cholerae to doxycycline associated with spontaneous mutation. Int J Antimicrob Agents. 2020;56(3):106097. https://doi.org/10.1016/j.ijantimicag.2020.106097 PMID:32697966 DOI: https://doi.org/10.1016/j.ijantimicag.2020.106097
Kotwani A, Joshi J, Lamkang AS. Over-the-counter sale of antibiotics in India: a qualitative study of providers’ perspectives across two states. Antibiotics (Basel). 2021;10(9):1123. https://doi.org/10.3390/antibiotics10091123 PMID:34572705 DOI: https://doi.org/10.3390/antibiotics10091123
Fair RJ, Tor Y. Antibiotics and Bacterial Resistance in the 21st century. Perspect. Medicin Chem; 2014;6:25-64. DOI: https://doi.org/10.4137/PMC.S14459
Yacouba A, Olowo-Okere A, Yunusa I. Repurposing of antibiotics for clinical management of COVID-19: a narrative review. Ann Clin Microbiol Antimicrob. 2021;20(1):37-38. https://doi.org/10.1186/s12941-021-00444-9 PMID:34020659 DOI: https://doi.org/10.1186/s12941-021-00444-9
Burns AL, Sleebs BE, Gancheva M, et al. Targeting malaria parasites with novel derivatives of azithromycin. Front Cell Infect Microbiol. 2022;12:1063407. https://doi.org/10.3389/fcimb.2022.1063407 PMID:36530422 DOI: https://doi.org/10.3389/fcimb.2022.1063407
Burns AL, Sleebs BE, Siddiqui G, et al. Retargeting azithromycin analogues to have dual-modality antimalarial activity. BMC Biol.2020;18:1-23. DOI: https://doi.org/10.1186/s12915-020-00859-4
Gore-Langton GR, Cairns M, Compaoré YD, et al. Effect of adding azithromycin to the antimalarials used for seasonal malaria chemoprevention on the nutritional status of African children. Trop Med Int Health. 2020;25(6):740-750. DOI: https://doi.org/10.1111/tmi.13390
Peric M, Pešić D, Alihodžić S, et al. A novel class of fast-acting antimalarial agents: substituted 15-membered azalides. Br J Pharmacol. 2021;178(2):363-377. https://doi.org/10.1111/bph.15292 PMID:33085774 DOI: https://doi.org/10.1111/bph.15292
Advani D, Kumar P. Therapeutic targeting of repurposed anticancer drugs in Alzheimer’s disease: using the multiomics approach. ACS Omega. 2021;6(21):13870-13887. https://doi.org/10.1021/acsomega.1c01526 PMID:34095679 DOI: https://doi.org/10.1021/acsomega.1c01526
Tímár J, Ladányi A, Forster-Horváth C, et al. Neoadjuvant immunotherapy of oral squamous cell carcinoma modulates intratumoral CD4/CD8 ratio and tumor microenvironment: a multicenter phase II clinical trial. J Clin Oncol. 2005;23(15):3421-3432. https://doi.org/10.1200/JCO.2005.06.005 PMID:15908653 DOI: https://doi.org/10.1200/JCO.2005.06.005
Avershina E, Shapovalova V, Shipulin G. Fighting antibiotic resistance in hospital-acquired infections: current state and emerging technologies in disease prevention, diagnostics and therapy. Front Microbiol. 2021;12:2044. DOI: https://doi.org/10.3389/fmicb.2021.707330
Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol. 2019;17(3):141-155. https://doi.org/10.1038/s41579-018-0141-x PMID:30683887 DOI: https://doi.org/10.1038/s41579-018-0141-x
Hartkoorn RC, Sala C, Neres J, et al. Towards a new tuberculosis drug: pyridomycin-nature’s isoniazid. EMBO Mol Med. 2012;4(10):1032-1042. DOI: https://doi.org/10.1002/emmm.201201689
Diacon AH, Dawson R, Groote-Bidlingmaier F, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med. 2015;191(8):943-953. DOI: https://doi.org/10.1164/rccm.201410-1801OC
Weng H-B, Chen H-X, Wang M-W. Innovation in neglected tropical disease drug discovery and development. Infect Dis Poverty. 2018;7(1):67. https://doi.org/10.1186/s40249-018-0444-1 PMID:29950174 DOI: https://doi.org/10.1186/s40249-018-0444-1
Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6(7):e1001005. https://doi.org/10.1371/journal.ppat.1001005 PMID:20661479 DOI: https://doi.org/10.1371/journal.ppat.1001005
Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P&T. 2015;40(4):277-283. PMID:25859123
Scherf A, Lopez-Rubio JJ, Riviere L. Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol. 2008;62:445-470. DOI: https://doi.org/10.1146/annurev.micro.61.080706.093134
Gomez JE, McKinney JD. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb). 2004;84(1-2):29-44. https://doi.org/10.1016/j.tube.2003.08.003 PMID:14670344 DOI: https://doi.org/10.1016/j.tube.2003.08.003
Barrett MP, Kyle DE, Sibley LD, Radke JB, Tarleton RL. Protozoan persister-like cells and drug treatment failure. Nat Rev Microbiol. 2019;17(10):607-620. https://doi.org/10.1038/s41579-019-0238-x PMID:31444481 DOI: https://doi.org/10.1038/s41579-019-0238-x
Donlan RM. Biofilms and device-associated infections. Emerg Infect Dis. 2001;7(2):277-281. https://doi.org/10.3201/eid0702.010226 PMID:11294723 DOI: https://doi.org/10.3201/eid0702.010226
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol. 2014;32(1):40-51. https://doi.org/10.1038/nbt.2786 PMID:24406927 DOI: https://doi.org/10.1038/nbt.2786
Ginsberg AM, Spigelman M. Challenges in tuberculosis drug research and development. Nat Med. 2007;13(3):290-294. https://doi.org/10.1038/nm0307-290 PMID:17342142 DOI: https://doi.org/10.1038/nm0307-290
Takuadina AI, Pazylkhan NP, Iskakov KT. Mathematical modeling of infectious diseases on the example of Astana city. Sci Educ. 2023;71.
Jiménez-Díaz MB, Mulet T, Viera S, et al. Improved murine model of malaria using Plasmodium falciparum competent strains and non-myelodepleted NOD-SCID IL2Rgammanull mice engrafted with human erythrocytes. Antimicrob Agents Chemother. 2009;53(10):4533-4536. https://doi.org/10.1128/AAC.00519-09 PMID:19596869 DOI: https://doi.org/10.1128/AAC.00519-09
Aguilar C, Alves da Silva M, Saraiva M, et al. Organoids as host models for infection biology – a review of methods. Exp Mol Med. 2021;53(10):1471-1482. PMID:34663936 DOI: https://doi.org/10.1038/s12276-021-00629-4
Mihaljevic JR, Borkovec S, Ratnavale S, et al. SPARSEMODr: rapidly simulate spatially explicit and stochastic models of COVID-19 and other infectious diseases. Biol Methods Protocols. 2022;7(1):bpac022. DOI: https://doi.org/10.1093/biomethods/bpac022
Blutt SE, Estes MK. Organoid models for infectious disease. Annu Rev Med. 2022;73(1):167-182. https://doi.org/10.1146/annurev-med-042320-023055 PMID:34644153 DOI: https://doi.org/10.1146/annurev-med-042320-023055
Smith GC, Kao RR, Walker M. Infectious disease modelling to inform policy. Rev Sci Tech. 2023;42:173-179. https://doi.org/10.20506/rst.42.3360 PMID:37232307 DOI: https://doi.org/10.20506/rst.42.3360
Anna PGS, Henrique dos Santos M, Banerjee A. A statistical examination of distinct characteristics influencing the performance of vector-borne epidemiological agent-based simulation models. Modelling. 2021;2(2):166-196. https://doi.org/10.3390/modelling2020009 DOI: https://doi.org/10.3390/modelling2020009
Raja D. The power of epidemiological modelling in understanding and managing infectious diseases. Chettinad Health City Med J (E-2278-2044 & P-2277-8845), 2023;12(1):1-2. DOI: https://doi.org/10.24321/2278.2044.202301
Rong N, Liu J. Development of animal models for emerging infectious diseases by breaking the barrier of species susceptibility to human pathogens. Emerg Microbes Infections. 2023;12(1):2178242. DOI: https://doi.org/10.1080/22221751.2023.2178242
Fitzpatrick MC, Bauch CT, Townsend JP, Galvani AP. Modelling microbial infection to address global health challenges. Nat Microbiol. 2019;4(10):1612-1619. https://doi.org/10.1038/s41564-019-0565-8 PMID:31541212 DOI: https://doi.org/10.1038/s41564-019-0565-8
Cartelle Gestal M, Dedloff MR, Torres-Sangiao E. Computational health engineering applied to model infectious diseases and antimicrobial resistance spread. Appl Sci (Basel). 2019;9(12):2486. https://doi.org/10.3390/app9122486 DOI: https://doi.org/10.3390/app9122486
Legrand N, Ploss A, Balling R, et al. Humanized mice for modeling human infectious disease: challenges, progress, and outlook. Cell Host Microbe 2009;6(1):5-9. DOI: https://doi.org/10.1016/j.chom.2009.06.006
Swearengen JR. Choosing the right animal model for infectious disease research. Animal Model Exp Med. 2018;1(2):100-108. https://doi.org/10.1002/ame2.12020 PMID:30891554 DOI: https://doi.org/10.1002/ame2.12020
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-04-18
Published 2024-05-10