Molecular targets and therapeutic potential of baicalein: a review

Authors

  • Kavita Munjal Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh - India
  • Yash Goel Department of Pharmacy, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala, Haryana - India
  • Vinod Kumar Gauttam Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Himachal Pradesh - India https://orcid.org/0000-0002-9796-170X
  • Hitesh Chopra Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu - India https://orcid.org/0000-0001-8867-7603
  • Madhav Singla Department of Pharmacy, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab - India
  • Smriti Department of Pharmacy, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab - India https://orcid.org/0000-0003-0720-5650
  • Saurabh Gupta Department of Pharmacology, Chameli Devi Institute of Pharmacy, Indore, Madhya Pradesh - India https://orcid.org/0000-0002-4783-0293
  • Rohit Sharma Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh - India

DOI:

https://doi.org/10.33393/dti.2024.2707

Keywords:

Alzheimer’s, Baicalein, Cancer, Epilepsy, Heart failure, Hypertension, Parkinson, Stroke

Abstract

Aim: Researchers using herbs and natural products to find new drugs often prefer flavonoids because of their potential as antioxidants and anti-inflammatories. The planned review addressed baicalein research findings in detail. This manuscript provides a complete review of baicalein’s potential pharmacological effects along with several molecular targets for better understanding of its therapeutic activities.

Materials and methods: We targeted the review on in vitro and in vivo studies reported on baicalein. For this, the literature is gathered from the database available on search engines like PubMed, ScienceDirect, Scopus, and Google Scholar up to 21 December 2023. The keywords “Scutellaria baicalensis”, “Oroxylum indicum”, “Neuroprotective”, “Cardioprotective”, “Toxicity studies”, and “Baicalein” were used to fetch the content.

Results: Baicalein’s molecular receptor binding approach has shown anticancer, antidiabetic, antimicrobial, antiaging, neuroprotective, cardioprotective, respiratory protective, gastroprotective, hepatic protective, and renal protective effects. The synergistic effects of this drug with other selective herbs are also contributed towards significant therapeutic potential.

Conclusion: This systematic review article from a contemporary and scientific perspective offers fresh insight into S. baicalensisO. indicum, and its bioactive component baicalein as a potential complementary medicine. Baicalein may be transformed into more efficacious and acceptable evidence-based medicine. However, we recommend more clinical and mechanistic approaches to confirm safety and efficacy of baicalein.

Downloads

Download data is not yet available.

References

Liang W, Huang X, Chen W. The effects of baicalin and baicalein on cerebral ischemia: a review. Aging Dis. 2017;8(6):850-867. https://doi.org/10.14336/AD.2017.0829 PMID:29344420 DOI: https://doi.org/10.14336/AD.2017.0829

Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev. 2009;35(1):57-68. https://doi.org/10.1016/j.ctrv.2008.09.005 PMID:19004559 DOI: https://doi.org/10.1016/j.ctrv.2008.09.005

Nik Salleh NNH, Othman FA, Kamarudin NA, Tan SC. The biological activities and therapeutic potentials of baicalein extracted from Oroxylum indicum: a systematic review. Molecules. 2020;25(23):5677. https://doi.org/10.3390/molecules25235677 PMID:33276419 DOI: https://doi.org/10.3390/molecules25235677

Rossi M, Meyer R, Constantinou P, et al. Molecular structure and activity toward DNA of baicalein, a flavone constituent of the Asian herbal medicine “Sho-saiko-to”. J Nat Prod. 2001;64(1):26-31. https://doi.org/10.1021/np000068s PMID:11170661 DOI: https://doi.org/10.1021/np000068s

Gao Y, Snyder SA, Smith JN, Chen YC. Anticancer properties of baicalein: a review. Med Chem Res. 2016;25(8):1515-1523. https://doi.org/10.1007/s00044-016-1607-x PMID:28008217 DOI: https://doi.org/10.1007/s00044-016-1607-x

Adin SN, Gupta I, Ahad A, Aqil M, Mujeeb M. A developed high-performance thin-layer chromatography method for the determination of baicalin in Oroxylum indicum L. and its antioxidant activity. J Planar Chromatogr Mod TLC. 2022;35(4):383-393. https://doi.org/10.1007/s00764-022-00182-4 DOI: https://doi.org/10.1007/s00764-022-00182-4

Rojsanga P, Bunsupa S, Sithisarn P. Flavones contents in extracts from Oroxylum indicum seeds and plant tissue cultures. Molecules. 2020;25(7):1545. https://doi.org/10.3390/molecules25071545 PMID:32231034 DOI: https://doi.org/10.3390/molecules25071545

Yu H, Han Y, Liu C, et al. Preparation of baicalein from baicalin using a baicalin-β-D-glucuronidase from Aspergillus niger b.48 strain. Process Biochem. 2020;97:168-175. https://doi.org/10.1016/j.procbio.2020.05.030 DOI: https://doi.org/10.1016/j.procbio.2020.05.030

Wang H, Ma X, Cheng Q, Wang L, Zhang L. Deep eutectic solvent-based ultrahigh pressure extraction of baicalin from Scutellaria baicalensis Georgi. Molecules. 2018;23(12):3233. https://doi.org/10.3390/molecules23123233 PMID:30544548 DOI: https://doi.org/10.3390/molecules23123233

Li HB, Jiang Y, Chen F. Separation methods used for Scutellaria baicalensis active components. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;812(1-2):277-290. https://doi.org/10.1016/S1570-0232(04)00545-8 PMID:15556504 DOI: https://doi.org/10.1016/S1570-0232(04)00545-8

de Oliveira MR, Nabavi SF, Habtemariam S, Erdogan Orhan I, Daglia M, Nabavi SM. The effects of baicalein and baicalin on mitochondrial function and dynamics: A review. Pharmacol Res. 2015;100:296-308. https://doi.org/10.1016/j.phrs.2015.08.021 PMID:26318266 DOI: https://doi.org/10.1016/j.phrs.2015.08.021

Jelić D, Lower-Nedza AD, Brantner AH, et al. Baicalein and Baicalein Inhibit Src Tyrosine Kinase and Production of IL-6. J Chem. 2016;2510621. https://doi.org/10.1155/2016/2510621 DOI: https://doi.org/10.1155/2016/2510621

Li L, Liu WY, Feng F, Wu CY, Xie N. Synthesis and in vitro cytotoxicity evaluation of baicalein amino acid derivatives. Chin J Nat Med. 2013;11(3):284-288. https://doi.org/10.1016/S1875-5364(13)60030-8 PMID:23725843 DOI: https://doi.org/10.1016/S1875-5364(13)60030-8

Huang WH, Lee AR, Chien PY, Chou TC. Synthesis of baicalein derivatives as potential anti-aggregatory and anti-inflammatory agents. J Pharm Pharmacol. 2005;57(2):219-225. https://doi.org/10.1211/0022357055371 PMID:15720786 DOI: https://doi.org/10.1211/0022357055371

Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell. 2021;39(6):759-778. https://doi.org/10.1016/j.ccell.2021.03.010 PMID:33891890 DOI: https://doi.org/10.1016/j.ccell.2021.03.010

Cheng YH, Li LA, Lin P, et al. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol Appl Pharmacol. 2012;263(3):360-367. https://doi.org/10.1016/j.taap.2012.07.010 PMID:22820424 DOI: https://doi.org/10.1016/j.taap.2012.07.010

Siegel RL, Giaquinto AN, Jemal A. Cancer statistics, 2024. CA Cancer J Clin. 2024;74(1):12-49. https://doi.org/10.3322/caac.21820 PMID:38230766 DOI: https://doi.org/10.3322/caac.21820

Lee HZ, Leung HW, Lai MY, Wu CH. Baicalein induced cell cycle arrest and apoptosis in human lung squamous carcinoma CH27 cells. Anticancer Res. 2005;25(2A):959-964. PMID:15868934

Arzanova E, Mayrovitz HN. The Epidemiology of Breast Cancer. In: Mayrovitz HN, ed. Breast Cancer [Internet Brisbane (AU): Exon Publications. 2022 Aug 6:chap 1. https://doi.org/10.36255/exon-publications-breast-cancer-epidemiology DOI: https://doi.org/10.36255/exon-publications-breast-cancer-epidemiology

Wang CZ, Li XL, Wang QF, Mehendale SR, Yuan CS. Selective fraction of Scutellaria baicalensis and its chemopreventive effects on MCF-7 human breast cancer cells. Phytomedicine. 2010;17(1):63-68. https://doi.org/10.1016/j.phymed.2009.07.003 PMID:19836937 DOI: https://doi.org/10.1016/j.phymed.2009.07.003

Sekiguchi M, Oda I, Matsuda T, Saito Y. Epidemiological trends and future perspectives of gastric cancer in Eastern Asia. Digestion. 2022;103(1):22-28. https://doi.org/10.1159/000518483 PMID:34515086 DOI: https://doi.org/10.1159/000518483

Mu J, Liu T, Jiang L, et al. The Traditional Chinese Medicine Baicalein Potently Inhibits Gastric Cancer Cells. J Cancer. 2016;7(4):453-461. https://doi.org/10.7150/jca.13548 PMID:26918059 DOI: https://doi.org/10.7150/jca.13548

Zheng, YH, Yin, LH, Grahn TH, Ye AF, Zhao YR, & Zhang QY. Anticancer effects of baicalein on hepatocellular carcinoma cells. Phytother Res. 2014;28(9),1 342-1348. https://doi.org/10.1002/ptr.5135 DOI: https://doi.org/10.1002/ptr.5135

Rawla P, Sunkara T, Gaduputi V. Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol. 2019;10(1):10-27. https://doi.org/10.14740/wjon1166 PMID:30834048 DOI: https://doi.org/10.14740/wjon1166

Takahashi H, Chen MC, Pham H, et al. Baicalein, a component of Scutellaria baicalensis, induces apoptosis by Mcl-1 down-regulation in human pancreatic cancer cells. Biochim Biophys Acta. 2011;1813(8):1465-1474. https://doi.org/10.1016/j.bbamcr.2011.05.003 PMID:21596068 DOI: https://doi.org/10.1016/j.bbamcr.2011.05.003

Tong WG, Ding XZ, Witt RC, Adrian TE. Lipoxygenase inhibitors attenuate growth of human pancreatic cancer xenografts and induce apoptosis through the mitochondrial pathway. Mol Cancer Ther. 2002;1(11):929-935. PMID:12481414

Doleman B, Mills KT, Lim S, Zelhart MD, Gagliardi G. Body mass index and colorectal cancer prognosis: a systematic review and meta-analysis. Tech Coloproctol. 2016;20(8):517-535. https://doi.org/10.1007/s10151-016-1498-3 PMID:27343117 DOI: https://doi.org/10.1007/s10151-016-1498-3

Phan T, Nguyen VH, A’lincourt Salazar M, et al. Inhibition of Autophagy Amplifies Baicalein-Induced Apoptosis in Human Colorectal Cancer. Mol Ther Oncolytics. 2020;19:1-7. https://doi.org/10.1016/j.omto.2020.08.016 PMID:33024814 DOI: https://doi.org/10.1016/j.omto.2020.08.016

Pidgeon GP, Kandouz M, Meram A, Honn KV. Mechanisms controlling cell cycle arrest and induction of apoptosis after 12-lipoxygenase inhibition in prostate cancer cells. Cancer Res. 2002;62(9):2721-2727. PMID:11980674

Dianatinasab M, Forozani E, Akbari A, et al. Dietary patterns and risk of bladder cancer: a systematic review and meta-analysis. BMC Public Health. 2022;22(1):73. https://doi.org/10.1186/s12889-022-12516-2 PMID:35016647 DOI: https://doi.org/10.1186/s12889-022-12516-2

Chao JI, Su WC, Liu HF. Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT. Mol Cancer Ther. 2007;6(11):3039-3048. https://doi.org/10.1158/1535-7163.MCT-07-0281 PMID:18025287 DOI: https://doi.org/10.1158/1535-7163.MCT-07-0281

Wu J, Zhou T, Wang Y, Jiang Y, Wang Y. Mechanisms and advances in anti-ovarian cancer with natural plants component. Molecules. 2021;26(19):5949. https://doi.org/10.3390/molecules26195949 PMID:34641493 DOI: https://doi.org/10.3390/molecules26195949

Liu H, Dong Y, Gao Y, et al. The fascinating effects of baicalein on cancer: a review. Int J Mol Sci. 2016;17(10):1681. https://doi.org/10.3390/ijms17101681 PMID:27735841 DOI: https://doi.org/10.3390/ijms17101681

Chen J, Li Z, Chen AY, et al. Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int J Mol Sci. 2013;14(3):6012-6025. https://doi.org/10.3390/ijms14036012 PMID:23502466 DOI: https://doi.org/10.3390/ijms14036012

Yan H, Xin S, Wang H, Ma J, Zhang H, Wei H. Baicalein inhibits MMP-2 expression in human ovarian cancer cells by suppressing the p38 MAPK-dependent NF-κB signaling pathway. Anticancer Drugs. 2015;26(6):649-656. https://doi.org/10.1097/CAD.0000000000000230 PMID:25811965 DOI: https://doi.org/10.1097/CAD.0000000000000230

Sanapour N, Malakoti F, Shanebandi D, et al. Thymoquinone augments methotrexate-induced apoptosis on osteosarcoma cells. Drug Res (Stuttg). 2022;72(4):220-225. https://doi.org/10.1055/a-1775-7908 PMID:35385883 DOI: https://doi.org/10.1055/a-1775-7908

Ye F, Wang H, Zhang L, Zou Y, Han H, Huang J. Baicalein induces human osteosarcoma cell line MG-63 apoptosis via ROS-induced BNIP3 expression. Tumour Biol. 2015;36(6):4731-4740. https://doi.org/10.1007/s13277-015-3122-y PMID:25618603 DOI: https://doi.org/10.1007/s13277-015-3122-y

Verma S, Gupta S, Das R, et al. Unravelling the approaches to treat osteoarthritis: a focus on the potential of medicinal plants. Pharmacognosy Res. 2023;15(1):13-25. https://doi.org/10.5530/097484900001 DOI: https://doi.org/10.5530/097484900001

Zhang Y, Song L, Cai L, Wei R, Hu H, Jin W. Effects of baicalein on apoptosis, cell cycle arrest, migration and invasion of osteosarcoma cells. Food Chem Toxicol. 2013;53:325-333. https://doi.org/10.1016/j.fct.2012.12.019 PMID:23266503 DOI: https://doi.org/10.1016/j.fct.2012.12.019

Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci. 2009;11(2):111-128. https://doi.org/10.31887/DCNS.2009.11.2/cqiu PMID:19585947 DOI: https://doi.org/10.31887/DCNS.2009.11.2/cqiu

Malik J, Munjal K, Deshmukh R. Attenuating effect of standardized lyophilized Cinnamomum zeylanicum bark extract against streptozotocin-induced experimental dementia of Alzheimer’s type. J Basic Clin Physiol Pharmacol. 2015;26(3):275-285. https://doi.org/10.1515/jbcpp-2014-0012 PMID:25301673 DOI: https://doi.org/10.1515/jbcpp-2014-0012

Choi RC, Zhu JT, Yung AW, et al. Synergistic action of flavonoids, baicalein, and daidzein in estrogenic and neuroprotective effects: a development of potential health products and therapeutic drugs against Alzheimer’s disease. Evid Based Complement Alternat Med. 2013;2013:635694. https://doi.org/10.1155/2013/635694 PMID:24058373 DOI: https://doi.org/10.1155/2013/635694

Zhang S-Q, Obregon D, Ehrhart J, et al. Baicalein reduces β-amyloid and promotes nonamyloidogenic amyloid precursor protein processing in an Alzheimer’s disease transgenic mouse model. J Neurosci Res. 2013;91(9):1239-1246. https://doi.org/10.1002/jnr.23244 PMID:23686791 DOI: https://doi.org/10.1002/jnr.23244

Zhu JT, Choi RC, Chu GK, et al. Flavonoids possess neuroprotective effects on cultured pheochromocytoma PC12 cells: a comparison of different flavonoids in activating estrogenic effect and in preventing beta-amyloid-induced cell death. J Agric Food Chem. 2007;55(6):2438-2445. https://doi.org/10.1021/jf063299z PMID:17323972 DOI: https://doi.org/10.1021/jf063299z

Patil RR. Epidemiology of Parkinson’s disease—current understanding of causation and risk factors. In: Arjunan SP, Kumar DK, eds. Techniques for assessment of parkinsonism for diagnosis and rehabilitation. Springer Singapore 2022; 31-48. DOI: https://doi.org/10.1007/978-981-16-3056-9_3

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839-840. https://doi.org/10.1038/42166 PMID:9278044 DOI: https://doi.org/10.1038/42166

Glabe CG, Kayed R. Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology. 2006;66(2)(suppl 1):S74-S78. https://doi.org/10.1212/01.wnl.0000192103.24796.42 PMID:16432151 DOI: https://doi.org/10.1212/01.wnl.0000192103.24796.42

Zhu M, Rajamani S, Kaylor J, Han S, Zhou F, Fink AL. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem. 2004;279(26):26846-26857. https://doi.org/10.1074/jbc.M403129200 PMID:15096521 DOI: https://doi.org/10.1074/jbc.M403129200

Suk K, Lee H, Kang SS, Cho GJ, Choi WS. Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J Pharmacol Exp Ther. 2003;305(2):638-645. https://doi.org/10.1124/jpet.102.047373 PMID:12606597 DOI: https://doi.org/10.1124/jpet.102.047373

Feigin VL, Brainin M, Norrving B, et al. World Stroke Organization (WSO): Global Stroke Fact Sheet 2022. Int J Stroke. 2022;17(1):18-29. https://doi.org/10.1177/17474930211065917 PMID:34986727 DOI: https://doi.org/10.1177/17474930211065917

Singh G, Sharma M, Kumar GA, et al; India State-Level Disease Burden Initiative Neurological Disorders Collaborators. The burden of neurological disorders across the states of India: the Global Burden of Disease Study 1990-2019. Lancet Glob Health. 2021;9(8):e1129-e1144. https://doi.org/10.1016/S2214-109X(21)00164-9 PMID:34273302 DOI: https://doi.org/10.1016/S2214-109X(21)00164-9

Zhou P, Iadecola C. iNOS and COX-2 in ischemic stroke. In: Lajtha A, Chan PH, eds. Handbook of neurochemistry and molecular neurobiology: acute ischemic injury and repair in the nervous system. New York, NY: Springer US 2007; 33-45. DOI: https://doi.org/10.1007/978-0-387-30383-3_3

Yuan Y, Men W, Shan X, et al. Baicalein exerts neuroprotective effect against ischaemic/reperfusion injury via alteration of NF-kB and LOX and AMPK/Nrf2 pathway. Inflammopharmacology. 2020;28(5):1327-1341. https://doi.org/10.1007/s10787-020-00714-6 PMID:32418004 DOI: https://doi.org/10.1007/s10787-020-00714-6

Chen W, Teng X, Ding H, et al. Nrf2 protects against cerebral ischemia-reperfusion injury by suppressing programmed necrosis and inflammatory signaling pathways. Ann Transl Med. 2022;10(6):285. https://doi.org/10.21037/atm-22-604 PMID:35434015 DOI: https://doi.org/10.21037/atm-22-604

Vaibhav K, Shrivastava P, Javed H, et al. Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem. 2012;367(1-2):73-84. https://doi.org/10.1007/s11010-012-1321-z PMID:22669728 DOI: https://doi.org/10.1007/s11010-012-1321-z

Pitkänen A, McIntosh TK. Animal models of post-traumatic epilepsy. J Neurotrauma. 2006;23(2):241-261. https://doi.org/10.1089/neu.2006.23.241 PMID:16503807 DOI: https://doi.org/10.1089/neu.2006.23.241

Li Q, Li QQ, Jia JN, et al. Baicalein exerts neuroprotective effects in FeCl3-induced posttraumatic epileptic seizures via suppressing ferroptosis. Front Pharmacol. 2019;10:638. https://doi.org/10.3389/fphar.2019.00638 PMID:31231224 DOI: https://doi.org/10.3389/fphar.2019.00638

Li Y, Chen Q, Ran D, et al. Changes in the levels of 12/15-lipoxygenase, apoptosis-related proteins and inflammatory factors in the cortex of diabetic rats and the neuroprotection of baicalein. Free Radic Biol Med. 2019;134:239-247. https://doi.org/10.1016/j.freeradbiomed.2019.01.019 PMID:30659940 DOI: https://doi.org/10.1016/j.freeradbiomed.2019.01.019

The Lancet. GBD 2017: a fragile world. Lancet. 2018;392(10159):1683. https://doi.org/10.1016/S0140-6736(18)32858-7 PMID:30415747 DOI: https://doi.org/10.1016/S0140-6736(18)32858-7

Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246. https://doi.org/10.3389/fped.2019.00246 PMID:31275909 DOI: https://doi.org/10.3389/fped.2019.00246

Quirt J, Hildebrand KJ, Mazza J, Noya F, Kim H. Asthma. Allergy Asthma Clin Immunol. 2018;14(S2)(suppl 2):50. https://doi.org/10.1186/s13223-018-0279-0 PMID:30275843 DOI: https://doi.org/10.1186/s13223-018-0279-0

Alsharairi NA. Scutellaria baicalensis and their natural flavone compounds as potential medicinal drugs for the treatment of nicotine-induced non-small-cell lung cancer and asthma. Int J Environ Res Public Health. 2021;18(10):5243. https://doi.org/10.3390/ijerph18105243 PMID:34069141 DOI: https://doi.org/10.3390/ijerph18105243

Xu T, Ge X, Lu C, et al. Baicalein attenuates OVA-induced allergic airway inflammation through the inhibition of the NF-κB signaling pathway. Aging (Albany NY). 2019;11(21):9310-9327. https://doi.org/10.18632/aging.102371 PMID:31692453 DOI: https://doi.org/10.18632/aging.102371

Westergren-Thorsson G, Larsen K, Nihlberg K, et al. Pathological airway remodelling in inflammation. Clin Respir J. 2010;4(s1)(suppl 1):1-8. https://doi.org/10.1111/j.1752-699X.2010.00190.x PMID:20500603 DOI: https://doi.org/10.1111/j.1752-699X.2010.00190.x

Sampsonas F, Kaparianos A, Lykouras D, Karkoulias K, Spiropoulos K. DNA sequence variations of metalloproteinases: their role in asthma and COPD. Postgrad Med J. 2007;83(978):244-250. https://doi.org/10.1136/pgmj.2006.052100 PMID:17403951 DOI: https://doi.org/10.1136/pgmj.2006.052100

Bakhtiyari M, Kazemian E, Kabir K, et al. Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: a population-based cohort study. Sci Rep. 2022;12(1):1544. https://doi.org/10.1038/s41598-022-05536-w PMID:35091663 DOI: https://doi.org/10.1038/s41598-022-05536-w

Gaziano TA, Bitton A, Anand S, Abrahams-Gessel S, Murphy A. Growing epidemic of coronary heart disease in low- and middle-income countries. Curr Probl Cardiol. 2010;35(2):72-115. https://doi.org/10.1016/j.cpcardiol.2009.10.002 PMID:20109979 DOI: https://doi.org/10.1016/j.cpcardiol.2009.10.002

Sharma A, et al. Combination effect of Spirulina fusiformis with rutin or chlorogenic acid in lipopolysaccharide-induced septic cardiac inflammation in experimental diabetic rat model. Pharmacogn Mag. 2021;17(6):257-267. https://doi.org/10.4103/pm.pm_179_21 DOI: https://doi.org/10.4103/pm.pm_179_21

Satyavert GS, Gupta S, Choudhury H, et al. Pharmacokinetics and tissue distribution of hydrazinocurcumin in rats. Pharmacol Rep. 2021;73(6):1734-1743. https://doi.org/10.1007/s43440-021-00312-5 PMID:34283375 DOI: https://doi.org/10.1007/s43440-021-00312-5

Al-Makki A, DiPette D, Whelton PK, et al. Hypertension pharmacological treatment in adults: A World Health Organization guideline executive summary. Hypertension. 2022;79(1):293-301. https://doi.org/10.1161/HYPERTENSIONAHA.121.18192 PMID:34775787 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.121.18192

Wu D, Ding L, Tang X, Wang W, Chen Y, Zhang T. Baicalin protects against hypertension-associated intestinal barrier impairment in part through enhanced microbial production of short-chain fatty acids. Front Pharmacol. 2019;10:1271. https://doi.org/10.3389/fphar.2019.01271 PMID:31719823 DOI: https://doi.org/10.3389/fphar.2019.01271

Li M, Ren C. Exploring the protective mechanism of baicalin in treatment of atherosclerosis using endothelial cells deregulation model and network pharmacology. BMC Complement Med Ther. 2022 Oct 3;22(1):257. https://doi.org/10.1186/s12906-022-03738-3 PMID: 36192741 (link to: https://pubmed.ncbi.nlm.nih.gov/36192741/) DOI: https://doi.org/10.1186/s12906-022-03738-3

Sampaio WO, Souza dos Santos RA, Faria-Silva R, da Mata Machado LT, Schiffrin EL, Touyz RM. Angiotensin-(1-7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49(1):185-192. https://doi.org/10.1161/01.HYP.0000251865.35728.2f PMID:17116756 DOI: https://doi.org/10.1161/01.HYP.0000251865.35728.2f

Alshehri B, Vijayakumar R, Senthilkumar S, et al. Therapeutic potential of nitric oxide synthase inhibitor from natural sources for the treatment of ischemic stroke. Saudi J Biol Sci. 2022;29(2):984-991. https://doi.org/10.1016/j.sjbs.2021.10.003 PMID:35197767 DOI: https://doi.org/10.1016/j.sjbs.2021.10.003

Huang P, Gao JW, Shi Z, et al. A novel UPLC-MS/MS method for simultaneous quantification of rhein, emodin, berberine and baicalin in rat plasma and its application in a pharmacokinetic study. Bioanalysis. 2012;4(10):1205-1213. https://doi.org/10.4155/bio.12.81 PMID:22651564 DOI: https://doi.org/10.4155/bio.12.81

Xin L, Gao J, Lin H, Qu Y, Shang C, Wang Y, Lu Y, Cui X. Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Frontiers in Pharmacology. 2020; 2;11:583200. https://doi.org/10.3389/fphar.2020.583200 DOI: https://doi.org/10.3389/fphar.2020.583200

Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 2003;111(10):1497-1504. https://doi.org/10.1172/JCI17664 PMID:12750399 DOI: https://doi.org/10.1172/JCI17664

Zhang K, Lu J, Mori T, et al. Baicalin increases VEGF expression and angiogenesis by activating the ERR{α}/PGC-1{α} pathway. Cardiovasc Res. 2011;89(2):426-435. https://doi.org/10.1093/cvr/cvq296 PMID:20851810 DOI: https://doi.org/10.1093/cvr/cvq296

Pang H, Wu T, Peng Z, Tan Q, Peng X, Zhan Z, Song L, Wei B. Baicalin induces apoptosis and autophagy in human osteosarcoma cells by increasing ROS to inhibit PI3K/Akt/mTOR, ERK1/2 and β-catenin signaling pathways. Journal of Bone Oncology. 2022; 1;33:100415. https://doi.org/10.1016/j.jbo.2022.100415 PMID: 35573641 (link https://pubmed.ncbi.nlm.nih.gov/35573641/ DOI: https://doi.org/10.1016/j.jbo.2022.100415

Sung JJ, Kuipers EJ, El-Serag HB. Systematic review: the global incidence and prevalence of peptic ulcer disease. Aliment Pharmacol Ther. 2009;29(9):938-946. https://doi.org/10.1111/j.1365-2036.2009.03960.x PMID:19220208 DOI: https://doi.org/10.1111/j.1365-2036.2009.03960.x

Cheng HC, Gleason EM, Nathan BA, Lachmann PJ, Woodward JK. Effects of clonidine on gastric acid secretion in the rat. J Pharmacol Exp Ther. 1981;217(1):121-126. PMID:7205646

DiJoseph JF, Eash JR, Mir GN. Gastric antisecretory and antiulcer effects of WHR1582A, a compound exerting alpha-2 adrenoceptor agonist activity. J Pharmacol Exp Ther. 1987;241(1):97-102. PMID:2883297

Ribeiro ARS, do Nascimento Valença JD, da Silva Santos J, et al. The effects of baicalein on gastric mucosal ulcerations in mice: protective pathways and anti-secretory mechanisms. Chem Biol Interact. 2016;260:33-41. https://doi.org/10.1016/j.cbi.2016.10.016 PMID:27780710 DOI: https://doi.org/10.1016/j.cbi.2016.10.016

Yang H, Lu Y, Zeng XF, et al. Antichronic gastric ulcer effect of zinc-baicalin complex on the acetic acid-induced chronic gastric ulcer rat model. Gastroenterol Res Pract. 2018;2018:1275486. https://doi.org/10.1155/2018/1275486 PMID:30510570 DOI: https://doi.org/10.1155/2018/1275486

Riazi K, Azhari H, Charette JH, et al. The prevalence and incidence of NAFLD worldwide: a systematic review and meta-analysis. Lancet Gastroenterol Hepatol. 2022;7(9):851-861. https://doi.org/10.1016/S2468-1253(22)00165-0 PMID:35798021 DOI: https://doi.org/10.1016/S2468-1253(22)00165-0

Huh Y, Cho YJ, Nam GE. Recent epidemiology and risk factors of nonalcoholic fatty liver disease. J Obes Metab Syndr. 2022;31(1):17-27. https://doi.org/10.7570/jomes22021 PMID:35332111 DOI: https://doi.org/10.7570/jomes22021

Maurice J, Manousou P. Non-alcoholic fatty liver disease. Clin Med (Lond). 2018;18(3):245-250. https://doi.org/10.7861/clinmedicine.18-3-245 PMID:29858436 DOI: https://doi.org/10.7861/clinmedicine.18-3-245

Yang JY, Li M, Zhang CL, Liu D. Pharmacological properties of baicalin on liver diseases: a narrative review. Pharmacol Rep. 2021;73(5):1230-1239. https://doi.org/10.1007/s43440-021-00227-1 PMID:33595821 DOI: https://doi.org/10.1007/s43440-021-00227-1

Ma Y, Yang F, Wang Y, et al. CaMKKβ is involved in AMP-activated protein kinase activation by baicalin in LKB1 deficient cell lines. PLoS One. 2012;7(10):e47900. https://doi.org/10.1371/journal.pone.0047900 PMID:23110126 DOI: https://doi.org/10.1371/journal.pone.0047900

Guo HX, Liu DH, Ma Y, et al. Long-term baicalin administration ameliorates metabolic disorders and hepatic steatosis in rats given a high-fat diet. Acta Pharmacol Sin. 2009;30(11):1505-1512. https://doi.org/10.1038/aps.2009.150 PMID:19890358 DOI: https://doi.org/10.1038/aps.2009.150

Zhong X, Liu H. Baicalin attenuates diet induced nonalcoholic steatohepatitis by inhibiting inflammation and oxidative stress via suppressing JNK signaling pathways. Biomed Pharmacother. 2018;98:111-117. https://doi.org/10.1016/j.biopha.2017.12.026 PMID:29247950 DOI: https://doi.org/10.1016/j.biopha.2017.12.026

Wu T, Liu T, Xing L, Ji G. Baicalin and puerarin reverse epithelial-mesenchymal transition via the TGF-β1/Smad3 pathway in vitro. Exp Ther Med. 2018;16(3):1968-1974. https://doi.org/10.3892/etm.2018.6400 PMID:30186426 DOI: https://doi.org/10.3892/etm.2018.6400

Fang P, Sun Y, Gu X, et al. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway. Phytomedicine. 2019;64:153074. https://doi.org/10.1016/j.phymed.2019.153074 PMID:31473580 DOI: https://doi.org/10.1016/j.phymed.2019.153074

Lv JC, Zhang LX. Prevalence and disease burden of chronic kidney disease. Adv Exp Med Biol. 2019;1165:3-15. https://doi.org/10.1007/978-981-13-8871-2_1 PMID:31399958 DOI: https://doi.org/10.1007/978-981-13-8871-2_1

Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol. 2012;2(2):1303-1353. https://doi.org/10.1002/cphy.c110041 PMID:23798302 DOI: https://doi.org/10.1002/cphy.c110041

Gauttam V, Munjal K, Mujwar S, Sawale J, Rohilla M, Gupta S. Comparative study of developed formulation and market formulation for antidiabetic potential in alloxan-induced diabetic Wistar rats. J Young Pharm. 2022;14(4):387-393. https://doi.org/10.5530/jyp.2022.14.78 DOI: https://doi.org/10.5530/jyp.2022.14.78

Ahad A, Mujeeb M, Ahsan H, Siddiqui WA. Prophylactic effect of baicalein against renal dysfunction in type 2 diabetic rats. Biochimie. 2014;106:101-110. https://doi.org/10.1016/j.biochi.2014.08.006 PMID:25151412 DOI: https://doi.org/10.1016/j.biochi.2014.08.006

Yang M, Kan L, Wu L, Zhu Y, Wang Q. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism. Exp Ther Med. 2019;17(3):2071-2076. https://doi.org/10.3892/etm.2019.7181 PMID:30867693 DOI: https://doi.org/10.3892/etm.2019.7181

Haye A, Ansari MA, Saini A, et al. Polyherbal formulation improves glucose-lipid metabolism and prevent hepatotoxicity in streptozotocin-induced diabetic rats: plausible role of IRS-PI3K-Akt-GLUT2 signaling. Pharmacogn Mag. 2022;18(77):52. https://doi.org/10.4103/pm.pm_318_21 DOI: https://doi.org/10.4103/pm.pm_318_21

Hu Z, Guan Y, Hu W, Xu Z, Ishfaq M. An overview of pharmacological activities of baicalin and its aglycone baicalein: new insights into molecular mechanisms and signaling pathways. Iran J Basic Med Sci. 2022;25(1):14-26. PMID:35656442

Piao XL, Cho EJ, Jang MH. Cytoprotective effect of baicalein against peroxynitrite-induced toxicity in LLC-PK(1) cells. Food Chem Toxicol. 2008;46(5):1576-1581. https://doi.org/10.1016/j.fct.2007.12.023 PMID:18299170 DOI: https://doi.org/10.1016/j.fct.2007.12.023

Sahu BD, Mahesh Kumar J, Sistla R. Baicalein, a bioflavonoid, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defenses and down-regulating the MAPKs and NF-κB pathways. PLoS One. 2015;10(7):e0134139. https://doi.org/10.1371/journal.pone.0134139 PMID:26222683 DOI: https://doi.org/10.1371/journal.pone.0134139

Kirtane AR, Verma M, Karandikar P, Furin J, Langer R, Traverso G. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 2021;16(4):369-384. https://doi.org/10.1038/s41565-021-00866-8 PMID:33753915 DOI: https://doi.org/10.1038/s41565-021-00866-8

Fair RJ, Tor Y. Antibiotics and bacterial resistance in the 21st century. Perspect Medicin Chem. 2014;6:25-64. https://doi.org/10.4137/PMC.S14459 PMID:25232278 DOI: https://doi.org/10.4137/PMC.S14459

Aghazadeh M, Zahedi Bialvaei A, Aghazadeh M, et al. Survey of the antibiofilm and antimicrobial effects of zingiber officinale (in vitro study). Jundishapur J Microbiol. 2016;9(2):e30167. https://doi.org/10.5812/jjm.30167 PMID:27127591 DOI: https://doi.org/10.5812/jjm.30167

Li C, Huang P, Wong K, et al. Coptisine-induced inhibition of Helicobacter pylori: elucidation of specific mechanisms by probing urease active site and its maturation process. J Enzyme Inhib Med Chem. 2018;33(1):1362-1375. https://doi.org/10.1080/14756366.2018.1501044 PMID:30191728 DOI: https://doi.org/10.1080/14756366.2018.1501044

Guo M, Zhang N, Li D, et al. Baicalin plays an anti-inflammatory role through reducing nuclear factor-κB and p38 phosphorylation in S. aureus-induced mastitis. Int Immunopharmacol. 2013;16(2):125-130. https://doi.org/10.1016/j.intimp.2013.03.006 PMID:23523628 DOI: https://doi.org/10.1016/j.intimp.2013.03.006

Ozma MA, Khodadadi E, Pakdel F, et al. Baicalin, a natural antimicrobial and anti-biofilm agent. J Herb Med. 2021;27:100432. https://doi.org/10.1016/j.hermed.2021.100432 DOI: https://doi.org/10.1016/j.hermed.2021.100432

Luo J, Dong B, Wang K, et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One. 2017;12(4):e0176883. https://doi.org/10.1371/journal.pone.0176883 PMID:28453568 DOI: https://doi.org/10.1371/journal.pone.0176883

Chen Y, Liu T, Wang K, et al. Baicalein inhibits Staphylococcus aureus biofilm formation and the quorum sensing system in vitro. PLoS One. 2016;11(4):e0153468. https://doi.org/10.1371/journal.pone.0153468 PMID:27128436 DOI: https://doi.org/10.1371/journal.pone.0153468

Li K, Liang Y, Cheng A, et al. Antiviral properties of baicalin: a concise review. Rev Bras Farmacogn. 2021;31(4):408-419. https://doi.org/10.1007/s43450-021-00182-1 PMID:34642508 DOI: https://doi.org/10.1007/s43450-021-00182-1

Su Y, Xiang Y. Clinical efficacy of baicalin combined with antivirals in the treatment of severe influenza A HIN1 influenza. Chin Hosp Pharm J. 2014;34:306-308.

Jenks JD, Cornely OA, Chen SC, Thompson GR III, Hoenigl M. Breakthrough invasive fungal infections: who is at risk? Mycoses. 2020;63(10):1021-1032. https://doi.org/10.1111/myc.13148 PMID:32744334 DOI: https://doi.org/10.1111/myc.13148

Campoy S, Adrio JL. Antifungals. Biochem Pharmacol. 2017;133:86-96. https://doi.org/10.1016/j.bcp.2016.11.019 PMID:27884742 DOI: https://doi.org/10.1016/j.bcp.2016.11.019

Li L, Lu H, Zhang X, et al. Baicalein acts against Candida albicans by targeting Eno1 and inhibiting glycolysis. Microbiol Spectr. 2022;10(4):e0208522. https://doi.org/10.1128/spectrum.02085-22 PMID:35900099 DOI: https://doi.org/10.1128/spectrum.02085-22

Zhu Y, Peng X, Zhang Y, Lin J, Zhao G. Baicalein protects against Aspergillus fumigatus keratitis by reducing fungal load and inhibiting TSLP-induced inflammatory response. Invest Ophthalmol Vis Sci. 2021;62(6):26. https://doi.org/10.1167/iovs.62.6.26 PMID:34038512 DOI: https://doi.org/10.1167/iovs.62.6.26

Wang T, Shi G, Shao J, et al. In vitro antifungal activity of baicalin against Candida albicans biofilms via apoptotic induction. Microb Pathog. 2015;87:21-29. https://doi.org/10.1016/j.micpath.2015.07.006 PMID:26169236 DOI: https://doi.org/10.1016/j.micpath.2015.07.006

Singh J, Kakkar P. Modulation of liver function, antioxidant responses, insulin resistance and glucose transport by Oroxylum indicum stem bark in STZ induced diabetic rats. Food Chem Toxicol. 2013;62:722-731. https://doi.org/10.1016/j.fct.2013.09.035 PMID:24140466 DOI: https://doi.org/10.1016/j.fct.2013.09.035

Fu Y, Luo J, Jia Z, et al. Baicalein protects against type 2 diabetes via promoting islet β-cell function in obese diabetic mice. Int J Endocrinol. 2014;2014:846742. https://doi.org/10.1155/2014/846742 PMID:25147566 DOI: https://doi.org/10.1155/2014/846742

Alqahtani AS, Hidayathulla S, Rehman MT, et al. Alpha-amylase and alpha-glucosidase enzyme inhibition and antioxidant potential of 3-oxolupenal and katononic acid isolated from Nuxia oppositifolia. Biomolecules. 2019;10(1):61. https://doi.org/10.3390/biom10010061 PMID:31905962 DOI: https://doi.org/10.3390/biom10010061

Sun W, Sang Y, Zhang B, et al. Synergistic effects of acarbose and an Oroxylum indicum seed extract in streptozotocin and high-fat-diet induced prediabetic mice. Biomed Pharmacother. 2017;87:160-170. https://doi.org/10.1016/j.biopha.2016.12.096 PMID:28056420 DOI: https://doi.org/10.1016/j.biopha.2016.12.096

Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep. 2014;14(1):453. https://doi.org/10.1007/s11892-013-0453-1 PMID:24292971 DOI: https://doi.org/10.1007/s11892-013-0453-1

Min W, Liu X, Qian Q, et al. Effects of baicalin against UVA-induced photoaging in skin fibroblasts. Am J Chin Med. 2014;42(3):709-727. https://doi.org/10.1142/S0192415X14500463 PMID:24871661 DOI: https://doi.org/10.1142/S0192415X14500463

Yun M-Y, Won E-Y, Lee J-H, Jung J-I, Choi H-J. Bioconversion from Scutellaria baicalensis (baicalin) fermented with Leatiporus sulphureus into enriched-baicalein and anti-wrinkle effects. Pharmacogn Mag. 2018;14(57):S453-457. PhcogMag1457453-2990838_081828.pdf DOI: https://doi.org/10.4103/pm.pm_32_18

Bossi O, Gartsbein M, Leitges M, Kuroki T, Grossman S, Tennenbaum T. UV irradiation increases ROS production via PKCdelta signaling in primary murine fibroblasts. J Cell Biochem. 2008;105(1):194-207. https://doi.org/10.1002/jcb.21817 PMID:18523985 DOI: https://doi.org/10.1002/jcb.21817

Dong R, Li L, Gao H, et al. Safety, tolerability, pharmacokinetics, and food effect of baicalein tablets in healthy Chinese subjects: A single-center, randomized, double-blind, placebo-controlled, single-dose phase I study. J Ethnopharmacol. 2021;274:114052. https://doi.org/10.1016/j.jep.2021.114052 PMID:33753147 DOI: https://doi.org/10.1016/j.jep.2021.114052

Song J, Zhang L, Xu Y, et al. The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro. Biochem Pharmacol. 2021;183:114302. https://doi.org/10.1016/j.bcp.2020.114302 PMID:33121927 DOI: https://doi.org/10.1016/j.bcp.2020.114302

Li M, Shi A, Pang H, et al. Safety, tolerability, and pharmacokinetics of a single ascending dose of baicalein chewable tablets in healthy subjects. J Ethnopharmacol. 2014;156:210-215. https://doi.org/10.1016/j.jep.2014.08.031 PMID:25219601 DOI: https://doi.org/10.1016/j.jep.2014.08.031

Tyagi S, Raghvendra, Sing U, et al. Applications of metabolomics—a systematic study of the unique chemical fingerprints: an overview. International Journal of Pharmaceutical Sciences Review and Research 2010;3:83-86 https://docslib.org/doc/2205314/applications-of-metabolomics-a-systematic-study-of-the-unique-chemical-fingerprints-an-overview (Accessed October 2023)

Hoimes CJ, Lamb L, Ruta S, et al. A phase I/II study of PHY906 plus capecitabine (CAP) in patients (pts) with advanced pancreatic cancer (APC). J Clin Oncol. 2008;26(15_suppl):15538. https://doi.org/10.1200/jco.2008.26.15_suppl.15538 DOI: https://doi.org/10.1200/jco.2008.26.15_suppl.15538

Srivastava S, Kumar A, Yadav PK, et al. Formulation and performance evaluation of polymeric mixed micelles encapsulated with baicalein for breast cancer treatment. Drug Dev Ind Pharm. 2021;47(9):1512-1522. https://doi.org/10.1080/03639045.2021.2007394 PMID:34781796 DOI: https://doi.org/10.1080/03639045.2021.2007394

Majumdar S, Dey S, Ganguly D, Mazumder R. Enhanced topical permeability of natural flavonoid baicalein through nano liposomal gel: in vitro and in vivo investigation. J Drug Deliv Sci Technol. 2020;57:101666. https://doi.org/10.1016/j.jddst.2020.101666 DOI: https://doi.org/10.1016/j.jddst.2020.101666

Kavithaa K, Sumathi S, Padma P. Intracellular uptake of PEG-functionalized baicalein loaded iron oxide nanoparticles regulates apoptotic genes in triple negative breast cancer cells: mitochondrial pathway targeted therapy for breast cancer. J Cluster Sci. 2017;28(4):2057-2073. https://doi.org/10.1007/s10876-017-1204-2 DOI: https://doi.org/10.1007/s10876-017-1204-2

Li X, Luo W, Ng TW, et al. Nanoparticle-encapsulated baicalein markedly modulates pro-inflammatory response in gingival epithelial cells. Nanoscale. 2017;9(35):12897-12907. https://doi.org/10.1039/C7NR02546G PMID:28650029 DOI: https://doi.org/10.1039/C7NR02546G

Yang J, Chen A, He X, Lu S. Fabrication of baicalein-encapsulated zeolitic imidazole framework as a novel nanocomposited wound closure material to persuade pH-responsive healing efficacy in post-caesarean section wound care. Int Wound J. 2023;20(6):1921-1933. https://doi.org/10.1111/iwj.14052 PMID:36572003 DOI: https://doi.org/10.1111/iwj.14052

Gharbavi M, Johari B, Ghorbani R, Madanchi H, Sharafi A. Green synthesis of Zn nanoparticles and in situ hybridized with BSA nanoparticles for Baicalein targeted delivery mediated with glutamate receptors to U87‐MG cancer cell lines. Appl Organomet Chem. 2023;37(1):e6926. https://doi.org/10.1002/aoc.6926 DOI: https://doi.org/10.1002/aoc.6926

Shi F, Wei Z, Zhao Y, Xu X. Nanostructured lipid carriers loaded with baicalin: an efficient carrier for enhanced antidiabetic effects. Pharmacogn Mag. 2016;12(47):198-202. https://doi.org/10.4103/0973-1296.186347 PMID:27601850 DOI: https://doi.org/10.4103/0973-1296.186347

Abdel Maksoud HA, Abou Zaid OAR, Elharrif MG, Omnia MA, Alaa EA. Selenium cleome droserifolia nanoparticles (Se-CNPs) and it's ameliorative effects in experimentally induced diabetes mellitus. Clin Nutr ESPEN. 2020 Dec;40:383-391. https://doi.org/10.1016/j.clnesp.2020.07.016 PMID: 33183567 (link to https://pubmed.ncbi.nlm.nih.gov/33183567/) DOI: https://doi.org/10.1016/j.clnesp.2020.07.016

Kavithaa K, Paulpandi M, Padma PR, Sumathi S. Induction of intrinsic apoptotic pathway and cell cycle arrest via baicalein loaded iron oxide nanoparticles as a competent nano-mediated system for triple negative breast cancer therapy. RSC Adv. 2016;6(69):64531-64543. https://doi.org/10.1039/C6RA11658B DOI: https://doi.org/10.1039/C6RA11658B

Yadav PK, Saklani R, Tiwari AK, et al. Ratiometric codelivery of Paclitaxel and Baicalein loaded nanoemulsion for enhancement of breast cancer treatment. Int J Pharm. 2023;643:123209. https://doi.org/10.1016/j.ijpharm.2023.123209 PMID:37422142 DOI: https://doi.org/10.1016/j.ijpharm.2023.123209

Wang W, Xi M, Duan X, Wang Y, Kong F. Delivery of baicalein and paclitaxel using self-assembled nanoparticles: synergistic antitumor effect in vitro and in vivo. Int J Nanomedicine. 2015;10:3737-3750. PMID:26045664 DOI: https://doi.org/10.2147/IJN.S80297

Li K, Zhang H, Gao L, et al. Preparation and characterization of baicalein-loaded nanoliposomes for antitumor therapy. J Nanomater. 2016;2861915. https://doi.org/10.1155/2016/2861915 DOI: https://doi.org/10.1155/2016/2861915

Liu Z, Zhang L, He Q, et al. Effect of Baicalin-loaded PEGylated cationic solid lipid nanoparticles modified by OX26 antibody on regulating the levels of baicalin and amino acids during cerebral ischemia-reperfusion in rats. Int J Pharm. 2015;489(1-2):131-138. https://doi.org/10.1016/j.ijpharm.2015.04.049 PMID:25895718 DOI: https://doi.org/10.1016/j.ijpharm.2015.04.049

Published

2024-06-06

How to Cite

Munjal, K., Goel, Y., Gauttam, V. K., Chopra, H., Singla, M., Smriti, Gupta, S., & Sharma, R. (2024). Molecular targets and therapeutic potential of baicalein: a review. Drug Target Insights, 18(1), 30–46. https://doi.org/10.33393/dti.2024.2707
Received 2023-11-06
Accepted 2024-01-11
Published 2024-06-06

Metrics