A ESBL and carbapenemase-producing Enterobacteriaceae in infectious pleural effusions: current epidemiology at Hôpital du Mali


  • Aimé Césaire Kalambry Medical Biology Laboratory, “Hôpital du Mali” Teaching Hospital, Bamako - Mali https://orcid.org/0000-0003-4325-1929
  • Tchamou Malraux Fleury Potindji Graduate School of Biological and Food Techniques, University of Lomé, Lomé - Togo https://orcid.org/0000-0001-5610-5432
  • Ibrehima Guindo National Institute of Public Health, Bamako - Mali https://orcid.org/0000-0003-3130-4763
  • Ambara Kassogué Medical Biology Laboratory, “Hôpital du Mali” Teaching Hospital, Bamako - Mali https://orcid.org/0009-0001-6058-5982
  • Boubacar Sidiki Ibrahim Drame Medical Biology Laboratory, “Hôpital du Mali” Teaching Hospital, Bamako - Mali
  • Seydou Togo Department of Thoracic Surgery, “Hôpital du Mali” Teaching Hospital, Bamako - Mali
  • Sadio Yena Department of Thoracic Surgery, “Hôpital du Mali” Teaching Hospital, Bamako - Mali
  • Seydou Doumbia Faculty of Medicine and Odontostomatology of Bamako, Bamako - Mali and University Clinical Research Center (UCRC), University of Science, Technique and Technologies of Bamako, Bamako - Mali
  • Mahamadou Diakite University Clinical Research Center (UCRC), University of Science, Technique and Technologies of Bamako, Bamako - Mali and Malaria Research and Training Center (MRTC), Bamako - Mali https://orcid.org/0000-0002-4268-8857




Carbapenem-resistant Enterobacteriaceae, ESBL, Mali, Pleural effusions


Background: Antimicrobial resistance (AMR) is a global health concern, with extended-spectrum β-lactamases (ESBLs) and carbapenemases being major contributors. Pleural infection (PI) is a severe condition in West Africa, complicated by AMR. This study aimed to investigate the prevalence and molecular characteristics of ESBL and carbapenemase-producing enterobacteria in pleural effusions in Mali.

Materials and methods: Pleural fluid samples from 526 patients with pleuritis were analyzed. Enterobacterial species were isolated and identified, and the prevalence of resistance genes (blaOXA-48, blaNDM-1, blaKPC, blaTEM, blaSHV) and virulence factors was determined.

Results: Among the patients, 110 were diagnosed with enterobacterial pleuritis. Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis were the main pathogens identified. Resistance to β-lactams and cephalosporins was high, while carbapenems showed good activity. ESBL production was detected in 33.6% of isolates, with blaTEM being the most common gene. Carbapenemase gene (blaNDM-1) was found in three isolates.

Conclusion: The study highlights the high prevalence of multidrug-resistant bacteria and the need for appropriate antibiotic selection based on local resistance patterns. Understanding the molecular characteristics of resistance is crucial for optimizing patient care and developing effective therapeutic strategies. Further research is needed to monitor and control AMR in PIs in Mali.


Download data is not yet available.


Li P, An J, Wang S, et al. Incidence and prognostic role of pleural effusion in patients with pulmonary embolism: a systematic review and meta-analysis. J Clin Med. 2023:12(6):2315. https://doi.org/10.3390/jcm12062315. DOI: https://doi.org/10.3390/jcm12062315

Arnold DT, Hamilton FW, Morris TT, et al. Epidemiology of pleural empyema in English hospitals and the impact of influenza. Eur Respir J. 2021;57(6):57. https://doi.org/10.1183/13993003.03546-2020 PMID:33334937 DOI: https://doi.org/10.1183/13993003.03546-2020

Brims F, Popowicz N, Rosenstengel A, et al. Bacteriology and clinical outcomes of patients with culture-positive pleural infection in Western Australia: a 6-year analysis. Respirology. 2019;24(2):171-178. https://doi.org/10.1111/resp.13395 PMID:30187976 DOI: https://doi.org/10.1111/resp.13395

White HD, White BAA, Song J, Fader R, Quiroga P, Arroliga AC. Pleural infections: a 9-year review of bacteriology, case characteristics and mortality. Am J Med Sci. 2013;345(5):349-354. https://doi.org/10.1097/MAJ.0b013e318259bd24 PMID:23044652 DOI: https://doi.org/10.1097/MAJ.0b013e318259bd24

Markatis E, Perlepe G, Afthinos A, et al. Mortality among hospitalized patients with pleural effusions. a multicenter, observational, prospective study. Front Med (Lausanne). 2022;9:828783. https://doi.org/10.3389/fmed.2022.828783 PMID:35280903 DOI: https://doi.org/10.3389/fmed.2022.828783

Tapia MD, Sylla M, Driscoll AJ, et al. The etiology of childhood pneumonia in Mali: findings from the Pneumonia Etiology Research for Child Health (PERCH) study. Pediatr Infect Dis J. 2021;40(9S):S18-S28. https://doi.org/10.1097/INF.0000000000002767 PMID:34448741 DOI: https://doi.org/10.1097/INF.0000000000002767

Singh SR, Teo AKJ, Prem K, et al. Epidemiology of extended-spectrum beta-lactamase and carbapenemase-producing Enterobacterales in the greater mekong subregion: a systematic-review and meta-analysis of risk factors associated with extended-spectrum beta-lactamase and carbapenemase isolation. Front Microbiol. 2021;12:695027. https://doi.org/10.3389/fmicb.2021.695027. DOI: https://doi.org/10.3389/fmicb.2021.695027

Mustafai MM, Hafeez M, Munawar S, et al. Prevalence of carbapenemase and extended-spectrum β-lactamase producing Enterobacteriaceae: a cross-sectional study. Antibiotics (Basel). 2023;12(1):12. https://doi.org/10.3390/antibiotics12010148 PMID:36671350 DOI: https://doi.org/10.3390/antibiotics12010148

Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care. 2020;8:13. https://doi.org/10.1186/s40560-020-0429-6. DOI: https://doi.org/10.1186/s40560-020-0429-6

Castanheira M, Simner PJ, Bradford PA. Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC Antimicrob Resist. 2021;3(3):dlab092. https://doi.org/10.1093/jacamr/dlab092. DOI: https://doi.org/10.1093/jacamr/dlab092

World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed. Accessed July 12, 2023.

Phungoen P, Sarunyaparit J, Apiratwarakul K, Wonglakorn L, Meesing A, Sawanyawisuth K. The association of ESBL Escherichia coli with mortality in patients with Escherichia coli bacteremia at the emergency department. Drug Target Insights. 2022;16(1):12-16. https://doi.org/10.33393/dti.2022.2422 PMID:36304435 DOI: https://doi.org/10.33393/dti.2022.2422

Shamsrizi P, Gladstone BP, Carrara E, et al. Variation of effect estimates in the analysis of mortality and length of hospital stay in patients with infections caused by bacteria-producing extended-spectrum beta-lactamases: a systematic review and meta-analysis. BMJ Open. 2020;10(1):e030266. https://doi.org/10.1136/bmjopen-2019-030266 PMID:31964661 DOI: https://doi.org/10.1136/bmjopen-2019-030266

Gao Y, Chen M, Cai M, et al. An analysis of risk factors for carbapenem-resistant Enterobacteriaceae infection. J Glob Antimicrob Resist. 2022;30:191-198. https://doi.org/10.1016/j.jgar.2022.04.005 PMID:35429666 DOI: https://doi.org/10.1016/j.jgar.2022.04.005

Vance MK, Cretella DA, Ward LM, Vijayvargiya P, Garrigos ZE, Wingler MJB. Risk factors for bloodstream infections due to ESBL-producing Escherichia coli, Klebsiella spp., and Proteus mirabilis. Pharmacy (Basel). 2023;11(2):74. https://doi.org/10.3390/pharmacy11020074 PMID:37104080 DOI: https://doi.org/10.3390/pharmacy11020074

Ouchar Mahamat O, Kempf M, Lounnas M, et al. Epidemiology and prevalence of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae in humans, animals and the environment in West and Central Africa. Int J Antimicrob Agents. 2021;57(1):106203. https://doi.org/10.1016/j.ijantimicag.2020.106203 PMID:33075511 DOI: https://doi.org/10.1016/j.ijantimicag.2020.106203

Kalambry A, Gaudré N, Drame BS, et al. Profil de résistance aux bêta-lactamines des entérobactéries isolées des prélèvements urinaires à l’Hôpital du Mali. Rev Mali Infectiol Microbiol. 2019;14(2):6-13. https://doi.org/10.53597/remim.v14i2.1363 DOI: https://doi.org/10.53597/remim.v14i2.1363

Muggeo A, Maiga A, Maiga I, et al. First description of IncX3 NDM-5-producing plasmid within Escherichia coli ST448 in Mali. J Med Microbiol. 2020;69(5):685-688. https://doi.org/10.1099/jmm.0.001182 PMID:32375948 DOI: https://doi.org/10.1099/jmm.0.001182

Sangare SA, Rondinaud E, Maataoui N, et al. Very high prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in bacteriemic patients hospitalized in teaching hospitals in Bamako, Mali. PLoS One. 2017;12(2):e0172652. https://doi.org/10.1371/journal.pone.0172652 PMID:28245252 DOI: https://doi.org/10.1371/journal.pone.0172652

Davies HE, Davies RJO, Davies CWH; BTS Pleural Disease Guideline Group. Management of pleural infection in adults: British Thoracic Society pleural disease guideline 2010. Thorax. 2010;65(suppl 2):ii41-ii53. https://doi.org/10.1136/thx.2010.137000 PMID:20696693 DOI: https://doi.org/10.1136/thx.2010.137000

CASFM/EUCAST. 2020. CASFM/EUCAST V1.2 Octobre 2020. Société Française de Microbiologie. https://www.sfm-microbiologie.org/2020/10/02/casfm-eucast-v1-2-octobre-2020/. Accessed May 11, 2023.

Guindo I, Dicko AA, Konaté I, et al. Facteurs de Pathogénicité et Résistance aux Antibiotiques des Souches d’Escherichia coli isolées chez les Enfants Diarrhéiques de 0 à 59 Mois en Milieu Communautaire à Bamako. Health Sci Dis. 2022;23(5):49-56.

Berends MS, Luz CF, Friedrich AW, Sinha BNM, Albers CJ, Glasner C. AMR – an R package for working with antimicrobial resistance data. https://doi.org/10.1101/810622. Accessed May 26, 2023. DOI: https://doi.org/10.18637/jss.v104.i03

Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-281. https://doi.org/10.1111/j.1469-0691.2011.03570.x PMID:21793988 DOI: https://doi.org/10.1111/j.1469-0691.2011.03570.x

Kpoda DS, Guessennd N, Bonkoungou JI, et al. Prevalence and resistance profile of extended-spectrum β-lactamases-producing Enterobacteriaceae in Ouagadougou, Burkina Faso. Afr J Microbiol Res. 2017;11(27):1120-1126. https://doi.org/10.5897/AJMR2017.8598 DOI: https://doi.org/10.5897/AJMR2017.8598

Bora G, Akgül Ö, Gülaçar E, Sayir F. The molecular analysis of antibiotic resistance and identification of the aerobic bacteria isolated from pleural fluids obtained from patients. Eur Rev Med Pharmacol Sci. 2022;26(19):7236-7244. PMID:36263534

Ouedraogo AS, Sanou M, Kissou A, et al. High prevalence of extended-spectrum β-lactamase producing Enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infect Dis. 2016;16(1):326. https://doi.org/10.1186/s12879-016-1655-3 PMID:27400864 DOI: https://doi.org/10.1186/s12879-016-1655-3

Sonda T, Van Zwetselaar M, Alifrangis M, Lund O, Kibiki G, Aarestrup FM. Meta-analysis of proportion estimates of extended-spectrum-beta-lactamase-producing Enterobacteriaceae in East Africa hospitals. Antimicrob Resist Infect Control. 2016;5:18. https://doi.org/10.1186/s13756-016-0117-4. DOI: https://doi.org/10.1186/s13756-016-0117-4

Garoy EY, Gebreab YB, Achila OO, et al. Methicillin-resistant Staphylococcus aureus (MRSA): prevalence and antimicrobial sensitivity pattern among patients—a multicenter study in Asmara, Eritrea. Can J Infect Dis Med Microbiol. 2019:8321834, 9 pg. https://doi.org/10.1155/2019/8321834 DOI: https://doi.org/10.1155/2019/8321834

Bedawi EO, Ricciardi S, Hassan M, et al. ERS/ESTS statement on the management of pleural infection in adults. Eur Respir J. 2023;61(2):61. https://doi.org/10.1183/13993003.01062-2022 PMID:36229045 DOI: https://doi.org/10.1183/13993003.01062-2022

Shen KR, Bribriesco A, Crabtree T, et al. The American Association for Thoracic Surgery consensus guidelines for the management of empyema. J Thorac Cardiovasc Surg. 2017;153(6):e129-e146. https://doi.org/10.1016/j.jtcvs.2017.01.030 PMID:28274565 DOI: https://doi.org/10.1016/j.jtcvs.2017.01.030

Dwomoh FP, Kotey FCN, Dayie NTKD, et al. Phenotypic and genotypic detection of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in Accra, Ghana. PLoS One. 2022;17(12):e0279715. https://doi.org/10.1371/journal.pone.0279715 PMID:36584159 DOI: https://doi.org/10.1371/journal.pone.0279715

Hackman H, Arhin R, Gordon A, Mensah SNB. Emergence of carbapenem-resistant Enterobacteriaceae among extended-spectrum beta-lactamase producers in Accra, Ghana. 2017;7(24). https://core.ac.uk/download/pdf/234657611.pdf

Abubakar U, Tangiisuran B, Elnaem MH, Sulaiman SAS, Khan FU. Mortality and its predictors among hospitalized patients with infections due to extended spectrum beta-lactamase (ESBL) Enterobacteriaceae in Malaysia: a retrospective observational study. Futur J Pharm Sci 2022;8:17:1-8. https://doi.org/10.1186/s43094-022-00406-8 DOI: https://doi.org/10.1186/s43094-022-00406-8

Olowo-Okere A, Ibrahim YKE, Olayinka BO, et al. Phenotypic and genotypic characterization of clinical carbapenem-resistant Enterobacteriaceae isolates from Sokoto, northwest Nigeria. New Microbes New Infect. 2020;37:100727. https://doi.org/10.1016/j.nmni.2020.100727 PMID:32939286 DOI: https://doi.org/10.1016/j.nmni.2020.100727

Ballot DE, Bandini R, Nana T, et al. A review of multidrug-resistant Enterobacteriaceae in a neonatal unit in Johannesburg, South Africa. BMC Pediatr. 2019;19(1):320. https://doi.org/10.1186/s12887-019-1709-y PMID:31493789 DOI: https://doi.org/10.1186/s12887-019-1709-y

Kotb S, Lyman M, Ismail G, et al. Epidemiology of carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated Infections Surveillance Data, 2011-2017. Antimicrob Resist Infect Control. 2020;9(1):2. https://doi.org/10.1186/s13756-019-0639-7 PMID:31911830 DOI: https://doi.org/10.1186/s13756-019-0639-7

Boyd SE, Holmes A, Peck R, Livermore DM, Hope W. OXA-48-Like β-lactamases: global epidemiology, treatment options, and development pipeline. Antimicrob Agents Chemother. 2022;66(8):e0021622. https://doi.org/10.1128/aac.00216-22 PMID:35856662 DOI: https://doi.org/10.1128/aac.00216-22

Jomehzadeh N, Jahangirimehr F, Chegeni SA. Virulence-associated genes analysis of carbapenemase-producing Escherichia coli isolates. PLoS One. 2022;17(5):e0266787. https://doi.org/10.1371/journal.pone.0266787 PMID:35536848 DOI: https://doi.org/10.1371/journal.pone.0266787

Pilmis B, Jullien V, Tabah A, Zahar JR, Brun-Buisson C. Piperacillin-tazobactam as alternative to carbapenems for ICU patients. Ann Intensive Care. 2017;7(1):113. https://doi.org/10.1186/s13613-017-0334-x PMID:29127502 DOI: https://doi.org/10.1186/s13613-017-0334-x

Gutiérrez-Gutiérrez B, Rodríguez-Baño J. Current options for the treatment of infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae in different groups of patients. Clin Microbiol Infect. 2019;25(8):932-942. https://doi.org/10.1016/j.cmi.2019.03.030 PMID:30986558 DOI: https://doi.org/10.1016/j.cmi.2019.03.030

Grabein B, Ebenhoch M, Kühnen E, Thalhammer F. Calculated parenteral initial treatment of bacterial infections: infections with multi-resistant Gram-negative rods—ESBL producers, carbapenemase-producing Enterobacteriaceae, carbapenem-resistant Acinetobacter baumannii. GMS Infect Dis. 2020;8:Doc04. PMID:32373429

Dranenko NO, Tutukina MN, Gelfand MS, Kondrashov FA, Bochkareva OO. Chromosome-encoded IpaH ubiquitin ligases indicate non-human enteroinvasive Escherichia. Sci Rep. 2022;12:1-10. https://doi.org/10.1038/s41598-022-10827-3 DOI: https://doi.org/10.1038/s41598-022-10827-3



How to Cite

Kalambry, A. C., Potindji, T. M. F., Guindo, I., Kassogué, A., Drame, B. S. I., Togo, S., Yena, S., Doumbia, S., & Diakite, M. (2023). A ESBL and carbapenemase-producing Enterobacteriaceae in infectious pleural effusions: current epidemiology at Hôpital du Mali. Drug Target Insights, 17(1), 92–100. https://doi.org/10.33393/dti.2023.2613



Original Research Article


Received 2023-05-29
Accepted 2023-08-02
Published 2023-08-29