Efficacy of LAMP assay for Mycobacterial spp. detection to prevent treatment delays and onset of drug resistance: a systematic review and meta-analysis
DOI:
https://doi.org/10.33393/dti.2023.2596Keywords:
Diagnosis, LAMP, Meta-analysis, Mycobacteria, Therapeutics, TuberculosisAbstract
Background: Tuberculosis (TB) remains a deadly disease affecting one-third population globally. Long turnaround time and poor sensitivity of the conventional diagnostics are the major impediments for faster diagnosis of Mycobacterial spp to prevent drug resistance. To overcome these issues, molecular diagnostics have been developed. They offer enhanced sensitivity but require sophisticated infrastructure, skilled manpower and remain expensive.
Methods: In that context, loop-mediated isothermal amplification (LAMP) assay, recommended by the WHO in 2016 for TB diagnosis, sounds as a promising alternative that facilitates visual read outs. Therefore, the aim of the present study is to conduct a meta-analysis to assess the diagnostic efficiency of LAMP for the detection of a panel of Mycobacterium spp. following PRISMA guidelines using scientific databases. From 1600 studies reported on the diagnosis of Mycobacterium spp., a selection of 30 articles were identified as eligible to meet the criteria of LAMP based diagnosis.
Results: It was found that most of the studies were conducted in high disease burden nations such as India, Thailand, and Japan with sputum as the most common specimen to be used for LAMP assay. Furthermore, IS6110 gene and fluorescence-based detections ranked as the most used target and method respectively. The accuracy and precision rates mostly varied between 79.2% to 99.3% and 73.9% to 100%, respectively. Lastly, a quality assessment based on QUADAS-2 of bias and applicability was conducted.
Conclusion: LAMP technology could be considered as a feasible alternative to current diagnostics considering high burden for rapid testing in low resource regions.
Downloads
References
Norbis L, Alagna R, Tortoli E, Codecasa LR, Migliori GB, Cirillo DM. Challenges and perspectives in the diagnosis of extrapulmonary tuberculosis. Expert Rev Anti Infect Ther. 2014;12(5):633-647. https://doi.org/10.1586/14787210.2014.899900 PMID: 24717112 DOI: https://doi.org/10.1586/14787210.2014.899900
Pai M, Nicol MP, Boehme CC. Tuberculosis diagnostics: state of the art and future directions. Microbiol Spectr. 2016;4(5):1-15. https://doi.org/10.1128/microbiolspec.TBTB2-0019-2016 PMID:27763258 DOI: https://doi.org/10.1128/microbiolspec.TBTB2-0019-2016
World Health Organization. Global Tuberculosis Report 2015. WHO 2015.
American Thoracic Society; Centers for Disease Control and Prevention; Infectious Diseases Society of America. American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: controlling tuberculosis in the United States. Am J Respir Crit Care Med. 2005;172(9):1169-1227. https://doi.org/10.1164/rccm.2508001 PMID:16249321 DOI: https://doi.org/10.1164/rccm.2508001
Park KS, Kim JY, Lee JW, et al. Comparison of the Xpert MTB/RIF and Cobas TaqMan MTB assays for detection of Mycobacterium tuberculosis in respiratory specimens. J Clin Microbiol. 2013;51(10):3225-3227. https://doi.org/10.1128/JCM.01335-13 PMID:23863563 DOI: https://doi.org/10.1128/JCM.01335-13
Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63. https://doi.org/10.1093/nar/28.12.e63 PMID:10871386 DOI: https://doi.org/10.1093/nar/28.12.e63
Bhatt A, Fatima Z, Ruwali M, et al. CLEVER assay: a visual and rapid RNA extraction-free detection of SARS-CoV-2 based on CRISPR-Cas integrated RT-LAMP technology. J Appl Microbiol. 2022;133(2):410-421. https://doi.org/10.1111/jam.15571 PMID:35396760 DOI: https://doi.org/10.1111/jam.15571
Huang WE, Lim B, Hsu CC, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microb Biotechnol. 2020;13(4):950-961. https://doi.org/10.1111/1751-7915.13586 PMID:32333644 DOI: https://doi.org/10.1111/1751-7915.13586
Broughton JP, Deng X, Yu G, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38(7):870-874. https://doi.org/10.1038/s41587-020-0513-4 PMID:32300245 DOI: https://doi.org/10.1038/s41587-020-0513-4
World Health Organization. The use of loop-mediated isothermal amplification (TBLAMP) for the diagnosis of pulmonary tuberculosis: policy guidance. World Health Organization 2016;1-52.
Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006-1012. https://doi.org/10.1016/j.jclinepi.2009.06.005 PMID:19631508 DOI: https://doi.org/10.1016/j.jclinepi.2009.06.005
Morillas AV, Gooch J, Frascione N. Feasibility of a handheld near infrared device for the qualitative analysis of bloodstains. Talanta. 2018;184:1-6. https://doi.org/10.1016/j.talanta.2018.02.110 PMID:29674018 DOI: https://doi.org/10.1016/j.talanta.2018.02.110
Gregório I, Zapata F, Torre M, García-Ruiz C. Statistical approach for ATR-FTIR screening of semen in sexual evidence. Talanta. 2017;174:853-857. https://doi.org/10.1016/j.talanta.2017.07.016 PMID:28738663 DOI: https://doi.org/10.1016/j.talanta.2017.07.016
Subali AD, Wiyono L. Reverse transcriptase loop mediated isothermal amplification (RT-LAMP) for COVID-19 diagnosis: a systematic review and meta-analysis. Pathog Glob Health. 2021;115(5):281-291. https://doi.org/10.1080/20477724.2021.1933335 PMID:34086539 DOI: https://doi.org/10.1080/20477724.2021.1933335
Subsoontorn P, Lohitnavy M, Kongkaew C. The diagnostic accuracy of isothermal nucleic acid point-of-care tests for human coronaviruses: a systematic review and meta-analysis. Sci Rep. 2020;10(1):22349. https://doi.org/10.1038/s41598-020-79237-7 PMID:33339871 DOI: https://doi.org/10.1038/s41598-020-79237-7
Phetsuksiri B, Klayut W, Rudeeaneksin J, et al. The performance of an in-house loop-mediated isothermal amplification for the rapid detection of Mycobacterium tuberculosis in sputum samples in comparison with Xpert MTB/RIF, microscopy and culture. Rev Inst Med Trop São Paulo. 2020;62:e36. https://doi.org/10.1590/s1678-9946202062036 PMID:32520211 DOI: https://doi.org/10.1590/s1678-9946202062036
Phetsuksiri B, Rudeeaneksin J, Srisungngam S, et al. Comparison of loop-mediated isothermal amplification, microscopy, culture, and PCR for diagnosis of pulmonary tuberculosis. Jpn J Infect Dis. 2020;73(4):272-277. https://doi.org/10.7883/yoken.JJID.2019.335 PMID:32115540 DOI: https://doi.org/10.7883/yoken.JJID.2019.335
Punati RD, Mallepaddi PC, Poonati R, et al. Development and evaluation of LAMP-coupled lateral flow device for the detection of MAP in livestock at point of care resource-limited areas. Braz J Microbiol. 2019;50(4):1105-1114. https://doi.org/10.1007/s42770-019-00116-z PMID:31541428 DOI: https://doi.org/10.1007/s42770-019-00116-z
Geojith G, Dhanasekaran S, Chandran SP, Kenneth J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J Microbiol Methods. 2011;84(1):71-73. https://doi.org/10.1016/j.mimet.2010.10.015 PMID:21047534 DOI: https://doi.org/10.1016/j.mimet.2010.10.015
Nguyen VAT, Nguyen HV, Dinh TV, et al. Evaluation of Loopamp™ MTBC detection kit for diagnosis of pulmonary tuberculosis at a peripheral laboratory in a high burden setting. Diagn Microbiol Infect Dis. 2018;90(3):190-195. https://doi.org/10.1016/j.diagmicrobio.2017.11.009 PMID:29246776 DOI: https://doi.org/10.1016/j.diagmicrobio.2017.11.009
Han M, Xiao H, Yan L. Diagnostic performance of nucleic acid tests in tuberculous pleurisy. BMC Infect Dis. 2020;20(1):242. https://doi.org/10.1186/s12879-020-04974-z PMID:32209054 DOI: https://doi.org/10.1186/s12879-020-04974-z
Perera SU, Navaratne V, Nagahawatte A, et al. Validating the loop mediated isothermal amplification (LAMP) technique to detect tuberculosis in a Sri Lankan laboratory setting. Ceylon Med J. 2018 31;63(1):40-42. https://doi.org/10.4038/cmj.v63i1.8625 PMID: 29764096 DOI: https://doi.org/10.4038/cmj.v63i1.8625
Joon D, Nimesh M, Gupta S, Kumar C, Varma-Basil M, Saluja D. Development and evaluation of rapid and specific sdaA LAMP-LFD assay with Xpert MTB/RIF assay for diagnosis of tuberculosis. J Microbiol Methods. 2019;159:161-166. https://doi.org/10.1016/j.mimet.2019.03.002 PMID:30858005 DOI: https://doi.org/10.1016/j.mimet.2019.03.002
Cao D, Hu L, Lin M, et al. Real-time fluorescence loop-mediated isothermal amplification (LAMP) for rapid and reliable diagnosis of pulmonary tuberculosis. J Microbiol Methods. 2015;109:74-78. https://doi.org/10.1016/j.mimet.2014.12.013 PMID:25533219 DOI: https://doi.org/10.1016/j.mimet.2014.12.013
Bojang AL, Mendy FS, Tientcheu LD, et al. Comparison of TB-LAMP, GeneXpert MTB/RIF and culture for diagnosis of pulmonary tuberculosis in The Gambia. J Infect. 2016;72(3):332-337. https://doi.org/10.1016/j.jinf.2015.11.011 PMID:26724771 DOI: https://doi.org/10.1016/j.jinf.2015.11.011
Joon D, Nimesh M, Saluja D. Loop-mediated isothermal amplification as alternative to PCR for the diagnosis of extra-pulmonary tuberculosis. Int J Tuberc Lung Dis. 2015;19(8):986-991. https://doi.org/10.5588/ijtld.14.0793 PMID:26162366 DOI: https://doi.org/10.5588/ijtld.14.0793
Gray CM, Katamba A, Narang P, et al. Feasibility and operational performance of tuberculosis detection by loop-mediated isothermal amplification platform in decentralized settings: results from a multicenter study. J Clin Microbiol. 2016;54(8):1984-1991. https://doi.org/10.1128/JCM.03036-15 PMID:27194691 DOI: https://doi.org/10.1128/JCM.03036-15
Kaku T, Minamoto F, D’Meza R, et al. Accuracy of LAMP-TB method for diagnosing tuberculosis in Haiti. Jpn J Infect Dis. 2016;69(6):488-492. https://doi.org/10.7883/yoken.JJID.2015.519 PMID:27000457 DOI: https://doi.org/10.7883/yoken.JJID.2015.519
Kim CK, Cho EA, Shin DM, Choi SW, Shin SY. Comparative evaluation of the loop-mediated isothermal amplification assay for detecting pulmonary tuberculosis. Ann Lab Med. 2018;38(2):119-124. https://doi.org/10.3343/alm.2018.38.2.119 PMID:29214755 DOI: https://doi.org/10.3343/alm.2018.38.2.119
Mitarai S, Okumura M, Toyota E, et al. Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis. 2011;15(9):1211-1217, i. https://doi.org/10.5588/ijtld.10.0629 PMID:21943848 DOI: https://doi.org/10.5588/ijtld.10.0629
Moon SH, Kim EJ, Tomono J, et al. Detection of Mycobacterium tuberculosis complex in sputum specimens using a loop-mediated isothermal amplification assay in Korea. J Med Microbiol. 2015;64(11):1335-1340. https://doi.org/10.1099/jmm.0.000164 PMID:26338293 DOI: https://doi.org/10.1099/jmm.0.000164
Pandey BD, Poudel A, Yoda T, et al. Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol. 2008;57(Pt 4):439-443. https://doi.org/10.1099/jmm.0.47499-0 PMID:18349362 DOI: https://doi.org/10.1099/jmm.0.47499-0
Phetsuksiri B, Rudeeaneksin J, Srisungngam S, et al. Loop-mediated isothermal amplification for rapid identification of Mycobacterium tuberculosis in comparison with immunochromatographic SD Bioline MPT64 Rapid® in a high burden setting. Jpn J Infect Dis. 2019;72(2):112-114. https://doi.org/10.7883/yoken.JJID.2018.128 PMID:30381677 DOI: https://doi.org/10.7883/yoken.JJID.2018.128
Sethi S, Singh S, Dhatwalia SK, et al. Evaluation of in-house loop-mediated isothermal amplification (LAMP) assay for rapid diagnosis of M. tuberculosis in pulmonary specimens. J Clin Lab Anal. 2013;27(4):272-276. https://doi.org/10.1002/jcla.21596 PMID:23852783 DOI: https://doi.org/10.1002/jcla.21596
Yadav R, Sharma N, Khaneja R, et al. Evaluation of the TB-LAMP assay for the rapid diagnosis of pulmonary tuberculosis in Northern India. Int J Tuberc Lung Dis. 2017;21(10):1150-1153. https://doi.org/10.5588/ijtld.17.0035 PMID:28911360 DOI: https://doi.org/10.5588/ijtld.17.0035
Modi M, Sharma K, Sharma M, et al. Multitargeted loop-mediated isothermal amplification for rapid diagnosis of tuberculous meningitis. Int J Tuberc Lung Dis. 2016;20(5):625-630. https://doi.org/10.5588/ijtld.15.0741 PMID:27084816 DOI: https://doi.org/10.5588/ijtld.15.0741
Nagdev KJ, Kashyap RS, Parida MM, et al. Loop-mediated isothermal amplification for rapid and reliable diagnosis of tuberculous meningitis. J Clin Microbiol. 2011;49(5):1861-1865. https://doi.org/10.1128/JCM.00824-10 PMID:21411583 DOI: https://doi.org/10.1128/JCM.00824-10
Sharma K, Sharma M, Batra N, Sharma A, Dhillon MS. Diagnostic potential of multi-targeted LAMP (loop-mediated isothermal amplification) for osteoarticular tuberculosis. J Orthop Res. 2017;35(2):361-365. https://doi.org/10.1002/jor.23293 PMID:27175946 DOI: https://doi.org/10.1002/jor.23293
Sharma M, Sharma K, Sharma A, Gupta N, Rajwanshi A. Loop-mediated isothermal amplification (LAMP) assay for speedy diagnosis of tubercular lymphadenitis: the multi-targeted 60-minute approach. Tuberculosis (Edinb). 2016;100:114-117. https://doi.org/10.1016/j.tube.2016.07.015 PMID:27553418 DOI: https://doi.org/10.1016/j.tube.2016.07.015
Nagai K, Horita N, Yamamoto M, et al. Diagnostic test accuracy of loop-mediated isothermal amplification assay for Mycobacterium tuberculosis: systematic review and meta-analysis. Sci Rep. 2016;6(1):39090. https://doi.org/10.1038/srep39090 PMID:27958360 DOI: https://doi.org/10.1038/srep39090
Shete PB, Farr K, Strnad L, Gray CM, Cattamanchi A. Diagnostic accuracy of TB-LAMP for pulmonary tuberculosis: a systematic review and meta-analysis. BMC Infect Dis. 2019;19(1):268. https://doi.org/10.1186/s12879-019-3881-y PMID:30890135 DOI: https://doi.org/10.1186/s12879-019-3881-y
Yu G, Shen Y, Zhong F, Ye B, Yang J, Chen G. Diagnostic accuracy of the loop-mediated isothermal amplification assay for extrapulmonary tuberculosis: a meta-analysis. PLoS One. 2018;13(6):e0199290. https://doi.org/10.1371/journal.pone.0199290 PMID:29944682 DOI: https://doi.org/10.1371/journal.pone.0199290
Das S, Mangold KA, Shah NS, Peterson LR, Thomson RB Jr, Kaul KL. Performance and utilization of a laboratory-developed nucleic acid amplification test (NAAT) for the diagnosis of pulmonary and extrapulmonary tuberculosis in a low-prevalence area. Am J Clin Pathol. 2020;154(1):115-123. https://doi.org/10.1093/ajcp/aqaa031 PMID:32249294 DOI: https://doi.org/10.1093/ajcp/aqaa031
Tayal D, Sethi P, Jain P. Point-of-care test for tuberculosis – a boon in diagnosis. Monaldi Arch Chest Dis. 2023. https://doi.org/10.4081/monaldi.2023.2528 PMID:37114932 DOI: https://doi.org/10.4081/monaldi.2023.2528
Ludi Z, Sule AA, Samy RP, et al. Diagnosis and biomarkers for ocular tuberculosis: from the present into the future. Theranostics. 2023;13(7):2088-2113. https://doi.org/10.7150/thno.81488 PMID:37153734 DOI: https://doi.org/10.7150/thno.81488
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2023 The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors contributing to Drug Target Insights agree to publish their articles under the Creative Common Attribution Non Commercial 4.0 (CC-BY-NC 4.0) license, which allows third parties to re-use the work without permission as long as the work is properly referenced and the use is non-commercial.
Accepted 2023-05-12
Published 2023-06-07