Current molecular approach for diagnosis of MRSA: a meta-narrative review
DOI:
https://doi.org/10.33393/dti.2022.2522Keywords:
Antimicrobial resistance, Molecular diagnosis, MRSAAbstract
Introduction: Detection and diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) are important in ensuring a correct and effective treatment, further reducing its spread. A wide range of molecular approaches has been used for the diagnosis of antimicrobial resistance (AMR) in MRSA. This review aims to study and appraise widely used molecular diagnostic methods for detecting MRSA.
Methods: This meta-narrative review was performed by searching PubMed using the following search terms: (molecular diagnosis) AND (antimicrobial resistance) AND (methicillin-resistant Staphylococcus aureus). Studies using molecular diagnostic techniques for the detection of MRSA were included, while non-English language, duplicates and non-article studies were excluded. After reviewing the libraries and a further manual search, 20 studies were included in this article. RAMESES publication standard for narrative reviews was used for this synthesis.
Results: A total of 20 full papers were reviewed and appraised in this synthesis, consisting of PCR technique (n = 7), deoxyribonucleic acid (DNA) Microarray (n = 1), DNA sequencing (n = 2), Xpert MRSA/SA BC assay (n = 2), matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) (n = 2), MLST (n = 4), SCCmec typing (n = 1) and GENECUBE (n = 1).
Discussion: Different diagnostic methods used to diagnose MRSA have been studied in this review. This study concludes that PCR has been extensively used due to its higher sensitivity and cost-effectiveness in the past five years
Downloads
References
Murray CJ, Ikuta KS, Sharara F, et al; Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):629-655. https://doi.org/10.1016/S0140-6736(21)02724-0 PMID:35065702 DOI: https://doi.org/10.1016/S0140-6736(21)02724-0
Jin Y, Zhou W, Zhan Q, et al. Genomic epidemiology and characterisation of penicillin-sensitive Staphylococcus aureus isolates from invasive bloodstream infections in China: an increasing prevalence and higher diversity in genetic typing be revealed. Emerg Microbes Infect. 2022;11(1):326-336. https://doi.org/10.1080/22221751.2022.2027218 PMID:34991434 DOI: https://doi.org/10.1080/22221751.2022.2027218
Hanson C, Gabrysch S, Mbaruku G, Cox J, Mkumbo E, Manzi F, Schellenberg J, Ronsmans C. Access to maternal health services: geographical inequalities, United Republic of Tanzania. Bull World Health Organ. 2017 Dec 1;95(12):810-820. https://doi.org/10.2471/BLT.17.194126. Epub 2017 Oct 31. PMID: 29200522; PMCID: PMC5710083. DOI: https://doi.org/10.2471/BLT.17.194126
Kaprou GD, Bergšpica I, Alexa EA, Alvarez-Ordóñez A, Prieto M. Rapid methods for antimicrobial resistance diagnostics. Antibiotics (Basel). 2021;10(2):209. https://doi.org/10.3390/antibiotics10020209 PMID:33672677 DOI: https://doi.org/10.3390/antibiotics10020209
Wong G, Greenhalgh T, Westhorp G, Buckingham J, Pawson R. RAMESES publication standards: meta-narrative reviews. J Adv Nurs. 2013;69(5):987-1004. https://doi.org/10.1111/jan.12092 PMID:23356699 DOI: https://doi.org/10.1111/jan.12092
Moutaouakkil K, Abdellaoui H, Arhoune B, et al. Paediatric osteoarticular infections caused by Staphylococcus aureus producing panton-valentine leucocidin in Morocco: risk factors and clinical features. Afr J Paediatr Surg. 2022;19(2):78-82. https://doi.org/10.4103/ajps.AJPS_18_21PMID:35017376 DOI: https://doi.org/10.4103/ajps.AJPS_18_21
Senok A, Monecke S, Nassar R, et al. Lateral flow immunoassay for the detection of panton-valentine leukocidin in Staphylococcus aureus from skin and soft tissue infections in the United Arab Emirates. Front Cell Infect Microbiol. 2021;11:754523. https://doi.org/10.3389/fcimb.2021.754523 PMID:34733796 DOI: https://doi.org/10.3389/fcimb.2021.754523
Reddy K, Whitelaw A. Can the Xpert MRSA/SA BC assay be used as an antimicrobial stewardship tool? A prospective assay validation and descriptive impact assessment study in a South African setting. BMC Infect Dis. 2021;21(1):177. https://doi.org/10.1186/s12879-021-05857-7 PMID:33588782 DOI: https://doi.org/10.1186/s12879-021-05857-7
Choi JH, Lee H, Choi EH. Antimicrobial resistance and molecular analysis of Staphylococcus aureus in staphylococcal scalded skin syndrome among children in Korea. J Korean Med Sci. 2021;36(3):e22. https://doi.org/10.3346/jkms.2021.36.e22 PMID:33463096 DOI: https://doi.org/10.3346/jkms.2021.36.e22
Anafo RB, Atiase Y, Kotey FCN, et al. Methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage among patients with diabetes at the Korle Bu Teaching Hospital. PLoS One. 2021;16(9):e0257004. https://doi.org/10.1371/journal.pone.0257004 PMID:34534230 DOI: https://doi.org/10.1371/journal.pone.0257004
Verdú-Expósito C, Romanyk J, Cuadros-González J, et al. Study of susceptibility to antibiotics and molecular characterization of high virulence Staphylococcus aureus strains isolated from a rural hospital in Ethiopia. PLoS One. 2020;15(3):e0230031. https://doi.org/10.1371/journal.pone.0230031 PMID:32163464 DOI: https://doi.org/10.1371/journal.pone.0230031
Tang B, Gong T, Cui Y, et al. Characteristics of oral methicillin-resistant Staphylococcus epidermidis isolated from dental plaque. Int J Oral Sci. 2020;12(1):15. https://doi.org/10.1038/s41368-020-0079-5 PMID:32385260 DOI: https://doi.org/10.1038/s41368-020-0079-5
Khawaja A, Arshad F, Khan I. Comparison of phenotypic methods with mecA gene based polymerase chain reaction for methicillin-resistant Staphylococcus aureus detection. J Pak Med Assoc. 2020;70(2):276-280. PMID:32063621
Jin Y, Yu X, Chen Y, et al. Characterization of highly virulent community-associated methicillin-resistant Staphylococcus aureus ST9-SCCmec XII causing bloodstream infection in China. Emerg Microbes Infect. 2020;9(1):2526-2535. https://doi.org/10.1080/22221751.2020.1848354 PMID:33174510 DOI: https://doi.org/10.1080/22221751.2020.1848354
Geng W, Qi Y, Li W, et al. Epidemiology of Staphylococcus aureus in neonates on admission to a Chinese neonatal intensive care unit. PLoS One. 2020;15(2):e0211845. https://doi.org/10.1371/journal.pone.0211845 PMID:32053585 DOI: https://doi.org/10.1371/journal.pone.0211845
Crandall H, Kapusta A, Killpack J, et al. Clinical and molecular epidemiology of invasive Staphylococcus aureus infection in Utah children; continued dominance of MSSA over MRSA. PLoS One. 2020;15(9):e0238991. https://doi.org/10.1371/journal.pone.0238991 PMID:32946486 DOI: https://doi.org/10.1371/journal.pone.0238991
Bouza E, Onori R, Semiglia-Chong MA, Álvarez-Uría A, Alcalá L, Burillo A. Fast track SSTI management program based on a rapid molecular test (GeneXpert® MRSA/SA SSTI) and antimicrobial stewardship. J Microbiol Immunol Infect. 2020;53(2):328-335. https://doi.org/10.1016/j.jmii.2018.07.008 PMID:30224283 DOI: https://doi.org/10.1016/j.jmii.2018.07.008
Yang X, Dong F, Qian S, et al. Accessory gene regulator (agr) dysfunction was unusual in Staphylococcus aureus isolated from Chinese children. BMC Microbiol. 2019;19(1):95. https://doi.org/10.1186/s12866-019-1465-z PMID:31088356 DOI: https://doi.org/10.1186/s12866-019-1465-z
Mutonga DM, Mureithi MW, Ngugi NN, Otieno FCF. Bacterial isolation and antibiotic susceptibility from diabetic foot ulcers in Kenya using microbiological tests and comparison with RT-PCR in detection of S. aureus and MRSA. BMC Res Notes. 2019;12(1):244. https://doi.org/10.1186/s13104-019-4278-0 PMID:31036061 DOI: https://doi.org/10.1186/s13104-019-4278-0
Latour K, Huang TD, Jans B, et al. Prevalence of multidrug-resistant organisms in nursing homes in Belgium in 2015. PLoS One. 2019;14(3):e0214327. https://doi.org/10.1371/journal.pone.0214327 PMID:30921364 DOI: https://doi.org/10.1371/journal.pone.0214327
Hida Y, Uemura K, Sugimoto H, et al. Evaluation of performance of the GENECUBE assay for rapid molecular identification of Staphylococcus aureus and methicillin resistance in positive blood culture medium. PLoS One. 2019;14(7):e0219819. https://doi.org/10.1371/journal.pone.0219819 PMID:31310615 DOI: https://doi.org/10.1371/journal.pone.0219819
Luo K, Shao F, Kamara KN, et al. Molecular characteristics of antimicrobial resistance and virulence determinants of Staphylococcus aureus isolates derived from clinical infection and food. J Clin Lab Anal. 2018;32(7):e22456. https://doi.org/10.1002/jcla.22456 PMID:29676483 DOI: https://doi.org/10.1002/jcla.22456
Lin S-Y, Tu HP, Chen TC, et al. Association of bacterial genotypes and epidemiological features with treatment failure in hemodialysis patients with methicillin-resistant Staphylococcus aureus bacteremia. PLoS One. 2018;13(6):e0198486. https://doi.org/10.1371/journal.pone.0198486 PMID:29864149 DOI: https://doi.org/10.1371/journal.pone.0198486
Yang X, Qian S, Yao K, et al. Multiresistant ST59-SCCmec IV-t437 clone with strong biofilm-forming capacity was identified predominantly in MRSA isolated from Chinese children. BMC Infect Dis. 2017;17(1):733. https://doi.org/10.1186/s12879-017-2833-7 PMID:29178841 DOI: https://doi.org/10.1186/s12879-017-2833-7
Liu Y, Zhang J, Ji Y. PCR-based approaches for the detection of clinical methicillin-resistant Staphylococcus aureus. Open Microbiol J. 2016;10(1):45-56. https://doi.org/10.2174/1874285801610010045 PMID:27335617 DOI: https://doi.org/10.2174/1874285801610010045
Saruta K, Hoshina S, Machida K. Genetic identification of Staphylococcus aureus by polymerase chain reaction using single-base-pair mismatch in 16S ribosomal RNA gene. Microbiol Immunol. 1995;39(11):839-844. https://doi.org/10.1111/j.1348-0421.1995.tb03280.xPMID:8657010 DOI: https://doi.org/10.1111/j.1348-0421.1995.tb03280.x
Woods SE, Beiter E, Drake B, Engel A. The prevalence of asymptomatic methicillin-resistant Staphylococcus aureus in school-age children. East J Med. 2011;16(1):18-21.
Sahebnasagh R, Saderi H, Owlia P. The prevalence of resistance to methicillin in Staphylococcus aureus strains isolated from patients by PCR method for Detection of mecA and nuc genes. Iran J Public Health. 2014;43(1):84-92. PMID:26060684
Kubista M, Andrade JM, Bengtsson M, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27(2-3):95-125. https://doi.org/10.1016/j.mam.2005.12.007 PMID:16460794 DOI: https://doi.org/10.1016/j.mam.2005.12.007
Markoulatos P, Siafakas N, Moncany M. Multiplex polymerase chain reaction: a practical approach. J Clin Lab Anal. 2002;16(1):47-51. https://doi.org/10.1002/jcla.2058 PMID:11835531 DOI: https://doi.org/10.1002/jcla.2058
Barski P, Piechowicz L, Galiński J, Kur J. Rapid assay for detection of methicillin-resistant Staphylococcus aureus using multiplex PCR. Mol Cell Probes. 1996;10(6):471-475. https://doi.org/10.1006/mcpr.1996.0066 PMID:9025087 DOI: https://doi.org/10.1006/mcpr.1996.0066
Tsai YH, Chen PH, Yu PA, Chen CL, Kuo LT, Huang KC. A multiplex PCR assay for detection of Vibrio vulnificus, Aeromonas hydrophila, methicillin-resistant Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus agalactiae from the isolates of patients with necrotizing fasciitis. Int J Infect Dis. 2019;81:73-80. https://doi.org/10.1016/j.ijid.2019.01.037PMID:30690211 DOI: https://doi.org/10.1016/j.ijid.2019.01.037
Chikkala R, Ch S, Divyakolu S, Ratnakar KS, Sritharan V. A simple sample processing protocol and multiplex PCR for direct detection of MRSA from uncultured clinical samples – a pilot study. Adv Infect Dis. 2019;9(1):25-38. https://doi.org/10.4236/aid.2019.91003 DOI: https://doi.org/10.4236/aid.2019.91003
Sanchini A. Recent developments in phenotypic and molecular diagnostic methods for antimicrobial resistance detection in Staphylococcus aureus: a narrative review. Diagnostics (Basel). 2022;12(1):208. https://doi.org/10.3390/diagnostics12010208 PMID:35054375 DOI: https://doi.org/10.3390/diagnostics12010208
Gautam SS, Kc R, Leong KW, Mac Aogáin M, O’Toole RF. A step-by-step beginner’s protocol for whole genome sequencing of human bacterial pathogens. J Biol Methods. 2019;6(1):e110. https://doi.org/10.14440/jbm.2019.276 PMID:31453259 DOI: https://doi.org/10.14440/jbm.2019.276
Lakhundi S, Zhang K. Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clin Microbiol Rev. 2018;31(4):e00020-18. https://doi.org/10.1128/CMR.00020-18 PMID:30209034 DOI: https://doi.org/10.1128/CMR.00020-18
Bumgarner R. Overview of DNA microarrays: types, applications, and their future. Curr Protoc Mol Biol. 2013 Jan;Chapter 22:Unit 22.1. https://doi.org/10.1002/0471142727.mb2201s101 DOI: https://doi.org/10.1002/0471142727.mb2201s101
Ma Z, Lasek-Nesselquist E, Lu J, et al. Characterization of genetic changes associated with daptomycin nonsusceptibility in Staphylococcus aureus. PLoS One. 2018;13(6):e0198366. https://doi.org/10.1371/journal.pone.0198366 PMID:29879195 DOI: https://doi.org/10.1371/journal.pone.0198366
Buchan BW, Allen S, Burnham CA, et al. Comparison of the next-generation Xpert MRSA/SA BC assay and the GeneOhm StaphSR assay to routine culture for identification of Staphylococcus aureus and methicillin-resistant S. aureus in positive-blood-culture broths. J Clin Microbiol. 2015;53(3):804-809. https://doi.org/10.1128/JCM.03108-14 PMID:25540397 DOI: https://doi.org/10.1128/JCM.03108-14
Feucherolles M, Poppert S, Utzinger J, Becker SL. MALDI-TOF mass spectrometry as a diagnostic tool in human and veterinary helminthology: a systematic review. Parasit Vectors. 2019;12(1):245. https://doi.org/10.1186/s13071-019-3493-9 PMID:31101120 DOI: https://doi.org/10.1186/s13071-019-3493-9
Tang W, Ranganathan N, Shahrezaei V, Larrouy-Maumus G. MALDI-TOF mass spectrometry on intact bacteria combined with a refined analysis framework allows accurate classification of MSSA and MRSA. PLoS One. 2019;14(6):e0218951. https://doi.org/10.1371/journal.pone.0218951 PMID:31247021 DOI: https://doi.org/10.1371/journal.pone.0218951
Esener N, Maciel-Guerra A, Giebel K, et al. Mass spectrometry and machine learning for the accurate diagnosis of benzylpenicillin and multidrug resistance of Staphylococcus aureus in bovine mastitis. PLOS Comput Biol. 2021;17(6):e1009108. https://doi.org/10.1371/journal.pcbi.1009108 PMID:34115749 DOI: https://doi.org/10.1371/journal.pcbi.1009108
Chen Y, Hong J, Chen Y, Wang H, Yu Y, Qu T. Characterization of a community-acquired methicillin-resistant sequence type 338 Staphylococcus aureus strain containing a staphylococcal cassette chromosome mec type VT. Int J Infect Dis. 2020;90:181-187. https://doi.org/10.1016/j.ijid.2019.10.034 PMID:31682959 DOI: https://doi.org/10.1016/j.ijid.2019.10.034
Maiden MCJ, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA. 1998;95(6):3140-3145. https://doi.org/10.1073/pnas.95.6.3140 PMID:9501229 DOI: https://doi.org/10.1073/pnas.95.6.3140
Park SG, Lee HS, Park JY, Lee H. Molecular epidemiology of Staphylococcus aureus in skin and soft tissue infections and bone and joint infections in Korean children. J Korean Med Sci. 2019;34(49):e315. https://doi.org/10.3346/jkms.2019.34.e315 PMID:31858755 DOI: https://doi.org/10.3346/jkms.2019.34.e315
Votintseva AA, Fung R, Miller RR, et al. Prevalence of Staphylococcus aureus protein A (spa) mutants in the community and hospitals in Oxfordshire. BMC Microbiol. 2014;14(1):63. https://doi.org/10.1186/1471-2180-14-63 PMID:24621342 DOI: https://doi.org/10.1186/1471-2180-14-63
Keener AB, Thurlow LT, Kang S, et al. Staphylococcus aureus protein A disrupts immunity mediated by long-lived plasma cells. J Immunol. 2017;198(3):1263-1273. https://doi.org/10.4049/jimmunol.1600093 PMID:28031339 DOI: https://doi.org/10.4049/jimmunol.1600093
Goudarzi M, Fazeli M, Goudarzi H, Azad M, Seyedjavadi SS. Spa typing of Staphylococcus aureus strains isolated from clinical specimens of patients with nosocomial infections in Tehran, Iran. Jundishapur J Microbiol. 2016;9(7):e35685. https://doi.org/10.5812/jjm.35685PMID:27679706 DOI: https://doi.org/10.5812/jjm.35685
Strommenger B, Braulke C, Heuck D, et al. Spa typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol. 2008;46(2):574-581. https://doi.org/10.1128/JCM.01599-07 PMID:18032612 DOI: https://doi.org/10.1128/JCM.01599-07
Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM, Kreiswirth BN. Spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol. 2004;42(2):792-799. https://doi.org/10.1128/JCM.42.2.792-799.2004 PMID:14766855 DOI: https://doi.org/10.1128/JCM.42.2.792-799.2004
Toleman MS, Reuter S, Jamrozy D, et al. Prospective genomic surveillance of methicillin-resistant Staphylococcus aureus (MRSA) associated with bloodstream infection, England, 1 October 2012 to 30 September 2013. Euro Surveill. 2019;24(4):1800215. https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800215 PMID:30696529 DOI: https://doi.org/10.2807/1560-7917.ES.2019.24.4.1800215
Tani H, Miyata R, Ichikawa K, et al. Universal quenching probe system: flexible, specific, and cost-effective real-time polymerase chain reaction method. Anal Chem. 2009;81(14):5678-5685. https://doi.org/10.1021/ac900414u PMID:19530673 DOI: https://doi.org/10.1021/ac900414u
Asadollahi P, Farahani NN, Mirzaii M, et al. Distribution of the most prevalent spa types among clinical isolates of methicillin-resistant and-susceptible Staphylococcus aureus around the world: a review. Front Microbiol. 2018;9:163. https://doi.org/10.3389/fmicb.2018.00163PMID:29487578 DOI: https://doi.org/10.3389/fmicb.2018.00163
International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Classification of staphylococcal cassette chromosome mec (SCCmec): guidelines for reporting novel SCCmec elements. Antimicrob Agents Chemother. 2009;53:4961-4967. https://doi.org/10.1128/AAC.00579-09 PMID 19721075 DOI: https://doi.org/10.1128/AAC.00579-09
Ito T, Hiramatsu K, Tomasz A, et al; International Working Group on the Classification of Staphylococcal Cassette Chromosome Elements (IWG-SCC). Guidelines for reporting novel mecA gene homologues. Antimicrob Agents Chemother. 2012;56(10):4997-4999. https://doi.org/10.1128/AAC.01199-12 PMID:22869575 DOI: https://doi.org/10.1128/AAC.01199-12
Chongtrakool P, Ito T, Ma XX, et al. Staphylococcal cassette chromosome mec (SCCmec) typing of methicillin-resistant Staphylococcus aureus strains isolated in 11 Asian countries: a proposal for a new nomenclature for SCCmec elements. Antimicrob Agents Chemother. 2006;50(3):1001-1012. https://doi.org/10.1128/AAC.50.3.1001-1012.2006 PMID:16495263 DOI: https://doi.org/10.1128/AAC.50.3.1001-1012.2006
Kaya H, Hasman H, Larsen J, et al. SCC mec Finder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. MSphere. 2018;3(1):e00612-e00617. https://doi.org/10.1128/mSphere.00612-17PMID:29468193 DOI: https://doi.org/10.1128/mSphere.00612-17
Rajput A, Poudel S, Tsunemoto H, et al. Identifying the effect of vancomycin on health care-associated methicillin-resistant Staphylococcus aureus strains using bacteriological and physiological media. Gigascience. 2021;10(1):giaa156. https://doi.org/10.1093/gigascience/giaa156 PMID:33420779 DOI: https://doi.org/10.1093/gigascience/giaa156
Panwala T, Gandhi P, Jethwa D. Inducible Clindamycin resistance and MRSA amongst Staphylococcus aureus isolates: a phenotypic detection. IP Int J Med Microbiol Trop Dis 2020;6(4):222–226. https://doi.org/10.18231/j.ijmmtd.2020.050 DOI: https://doi.org/10.18231/j.ijmmtd.2020.050
Liu F, Rajabi S, Shi C, et al. Antibacterial activity of recently approved antibiotics against methicillin-resistant Staphylococcus aureus (MRSA) strains: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob. 2022;21(1):37. https://doi.org/10.1186/s12941-022-00529-z PMID:35978400 DOI: https://doi.org/10.1186/s12941-022-00529-z
Kistler JM, Vroome CM, Ramsey FV, Ilyas AM. Increasing multidrug antibiotic resistance in MRSA infections of the hand: a 10-year analysis of risk factors. Hand (N Y). 2020;15(6):877-881. https://doi.org/10.1177/1558944719837693 PMID:30897954 DOI: https://doi.org/10.1177/1558944719837693
Kot B, Piechota M, Jakubczak A, et al. The prevalence of virulence determinants in methicillin-resistant Staphylococcus aureus isolated from different infections in hospitalized patients in Poland. Sci Rep. 2022;12(1):5477. https://doi.org/10.1038/s41598-022-09517-xPMID:35361858 DOI: https://doi.org/10.1038/s41598-022-09517-x
Turner NA, Sharma-Kuinkel BK, Maskarinec SA, et al. Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nat Rev Microbiol. 2019;17(4):203-218. https://doi.org/10.1038/s41579-018-0147-4 PMID:30737488 DOI: https://doi.org/10.1038/s41579-018-0147-4
Otto M. MRSA virulence and spread. Cell Microbiol. 2012;14(10):1513-1521. https://doi.org/10.1111/j.1462-5822.2012.01832.x PMID:22747834 DOI: https://doi.org/10.1111/j.1462-5822.2012.01832.x
Moormeier DE, Bayles KW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol. 2017;104(3):365-376. https://doi.org/10.1111/mmi.13634PMID:28142193 DOI: https://doi.org/10.1111/mmi.13634
Liu Y, Zhang J, Ji Y. Environmental factors modulate biofilm formation by Staphylococcus aureus. Sci Prog. 2020 Jan-Mar;103(1):36850419898659. https://doi.org/10.1177/0036850419898659 PMID:31902330 DOI: https://doi.org/10.1177/0036850419898659
Harraghy N, Hussain M, Haggar A, et al. The adhesive and immunomodulating properties of the multifunctional Staphylococcus aureus protein Eap. Microbiology (Reading). 2003;149(Pt 10):2701-2707. https://doi.org/10.1099/mic.0.26465-0 PMID:14523103 DOI: https://doi.org/10.1099/mic.0.26465-0
Siddiqui AH, Koirala J. Methicillin resistant Staphylococcus aureus. In: StatPearls. [internet] StatPearls Publishing 2021.
Tenover FC, Tickler IA, Le VM, Dewell S, Mendes RE, Goering RV. Updating molecular diagnostics for detecting methicillin-susceptible and methicillin-resistant Staphylococcus aureus isolates in blood culture bottles. J Clin Microbiol. 2019;57(11):e01195-e19. https://doi.org/10.1128/JCM.01195-19 PMID:31484703 DOI: https://doi.org/10.1128/JCM.01195-19
Martineau F, Picard FJ, Roy PH, Ouellette M, Bergeron MG. Species-specific and ubiquitous-DNA-based assays for rapid identification of Staphylococcus aureus. J Clin Microbiol. 1998;36(3):618-623. https://doi.org/10.1128/JCM.36.3.618-623.1998 PMID:9508283 DOI: https://doi.org/10.1128/JCM.36.3.618-623.1998
Tübbicke A, Hübner C, Hübner NO, Wegner C, Kramer A, Fleßa S. Cost comparison of MRSA screening and management – a decision tree analysis. BMC Health Serv Res. 2012;12(1):438. https://doi.org/10.1186/1472-6963-12-438 PMID:23198880 DOI: https://doi.org/10.1186/1472-6963-12-438
Brakstad OG, Aasbakk K, Maeland JA. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J Clin Microbiol. 1992;30(7):1654-1660. https://doi.org/10.1128/jcm.30.7.1654-1660.1992 PMID:1629319 DOI: https://doi.org/10.1128/jcm.30.7.1654-1660.1992
Chen C, Zhao Q, Guo J, Li Y, Chen Q. Identification of methicillin-resistant Staphylococcus aureus (MRSA) using simultaneous detection of mecA, nuc, and femB by Loop-Mediated Isothermal Amplification (LAMP). Curr Microbiol. 2017;74(8):965-971. https://doi.org/10.1007/s00284-017-1274-2 PMID:28573341 DOI: https://doi.org/10.1007/s00284-017-1274-2
Zhao L, Huang X, Zhang T, et al. A point-of-care test device for MRSA rapid detection. J Pharm Biomed Anal. 2022;209:114464. https://doi.org/10.1016/j.jpba.2021.114464 PMID:34915322 DOI: https://doi.org/10.1016/j.jpba.2021.114464
Uehara Y. Current status of Staphylococcal Cassette Chromosome mec (SCCmec). Antibiotics (Basel). 2022;11(1):86. https://doi.org/10.3390/antibiotics11010086 PMID:35052963 DOI: https://doi.org/10.3390/antibiotics11010086
Singh-Moodley A, Strasheim W, Mogokotleng R, Ismail H, Perovic O. Unconventional SCCmec types and low prevalence of the Panton-Valentine Leukocidin exotoxin in South African blood culture Staphylococcus aureus surveillance isolates, 2013-2016. PLoS One. 2019;14(11):e0225726. https://doi.org/10.1371/journal.pone.0225726 PMID:31774877 DOI: https://doi.org/10.1371/journal.pone.0225726
Burgold-Voigt S, Monecke S, Simbeck A, et al. Characterisation and molecular analysis of an unusual chimeric methicillin resistant Staphylococcus aureus strain and its bacteriophages. Front Genet. 2021;12:723958-723958. https://doi.org/10.3389/fgene.2021.723958 PMID:34868203 DOI: https://doi.org/10.3389/fgene.2021.723958
Kaku N, Sasaki D, Ota K, Miyazaki T, Yanagihara K. Changing molecular epidemiology and characteristics of MRSA isolated from bloodstream infections: nationwide surveillance in Japan in 2019. J Antimicrob Chemother. 2022;77(8):2130-2141. https://doi.org/10.1093/jac/dkac154 PMID:35639590 DOI: https://doi.org/10.1093/jac/dkac154
Lukassen MB, Saunders AM, Sindilariu P-D, Nielsen JL. Quantification of novel geosmin-producing bacteria in aquaculture systems. Aquaculture. 2017;479:304-310. https://doi.org/10.1016/j.aquaculture.2017.06.004 DOI: https://doi.org/10.1016/j.aquaculture.2017.06.004
Szabó J. Molecular methods in epidemiology of methicillin resistant Staphylococcus aureus (MRSA): advantages, disadvantages of different techniques. J Med Microbiol Diagn. 2014;3(3):1. https://doi.org/10.4172/2161-0703.1000147 DOI: https://doi.org/10.4172/2161-0703.1000147
Jaksik R, Iwanaszko M, Rzeszowska-Wolny J, Kimmel M. Microarray experiments and factors which affect their reliability. Biol Direct. 2015;10(1):46. https://doi.org/10.1186/s13062-015-0077-2 PMID:26335588 DOI: https://doi.org/10.1186/s13062-015-0077-2
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2022 The Authors
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2023-01-16
Published 2022-12-31