A novel liquid biopsy assay for detection of ERBB2 (HER2) amplification in circulating tumor cells (CTCs)
DOI:
https://doi.org/10.33393/jcb.2024.3046Keywords:
Analytical validation, Breast cancer, Circulating tumor cells (CTCs), Epic CTC Platform, HER2, Liquid biopsyAbstract
Purpose: Circulating tumor cell (CTC)-based ERBB2 (HER2) assay is a laboratory test developed by Epic Sciences using single-cell genomics to detect ERBB2 (HER2) amplification in CTCs found in the peripheral blood of metastatic breast cancer (MBC) patients.
Patients and methods: Peripheral blood was collected in Streck tubes and centrifugation was used to remove plasma and red blood cells. The remaining nucleated cells were deposited on glass slides, immunofluorescent-stained with proprietary antibodies, scanned by a high-definition digital scanner, and analyzed by a proprietary algorithm. In addition, single-cell genomics was performed on selected CTC. Analytical validation was performed using white blood cells from healthy donors and breast cancer cell lines with known levels of ERBB2 amplification. Clinical concordance was assessed on MBC patients whose blood was tested by the CTC ERBB2 (HER2) assay and those results are compared to results of matched metastatic tissue biopsy (immunohistochemistry [IHC] 3+ or IHC2+/in situ hybridization [ISH+]).
Results: Epic’s ERBB2 (HER2) assay detected 2-fold ERBB2 amplification with 85% sensitivity and 94% specificity. In the clinical concordance study, among the 50% of the cases that had ERBB2 status results from CTCs found to be chromosomally-unstable, the CTC ERBB2 (HER2) assay showed sensitivity of 69% and specificity of 78% when compared to HER2 status by metastatic tissue biopsy.
Conclusions: The CTC ERBB2 (HER2) assay can consistently detect ERBB2 status in MBC cell lines and in the population of patients with MBC with detectable chromosomally unstable CTCs for whom tissue biopsy is not available or is infeasible.
Downloads
References
Carey LA, Perou CM, Livasy CA, et al. Race, breast cancer subtypes, and survival in the Carolina breast cancer study. JAMA. 2006;295(21):2492-2502. doi:10.1001/jama.295.21.2492 DOI: https://doi.org/10.1001/jama.295.21.2492
Martínez-Sáez O, Prat A. Current and future management of HER2-positive metastatic breast cancer. JCO Oncol Pract. 2021;17(10):594-604. doi: 10.1200/OP.21.00172 DOI: https://doi.org/10.1200/OP.21.00172
Wolff AC, Hammond MEH, Hicks DG, et al; American Society of Clinical Oncology; College of American Pathologists. Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. J Clin Oncol. 2013;31(31):3997-4013. https://doi.org/10.1200/JCO.2013.50.9984 PMID:24101045 DOI: https://doi.org/10.1200/JCO.2013.50.9984
Gradishar WJ, Moran MS, Abraham J, et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2022;20(6):691-722. https://doi.org/10.6004/jnccn.2022.0030 PMID:35714673 DOI: https://doi.org/10.6004/jnccn.2022.0030
Gilson P, Merlin JL, Harlé A. Deciphering tumour heterogeneity: from tissue to liquid biopsy. Cancers (Basel). 2022;14(6):1384. https://doi.org/10.3390/cancers14061384 PMID:35326534 DOI: https://doi.org/10.3390/cancers14061384
Hiley C, de Bruin EC, McGranahan N, Swanton C. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol. 2014 Aug 27;15(8):453. doi: 10.1186/s13059-014-0453-8. PMID: 25222836 DOI: https://doi.org/10.1186/s13059-014-0453-8
Zardavas D, Irrthum A, Swanton C, Piccart M. Clinical management of breast cancer heterogeneity. Nat Rev Clin Oncol. 2015;12(7):381-394. https://doi.org/10.1038/nrclinonc.2015.73 PMID:25895611 DOI: https://doi.org/10.1038/nrclinonc.2015.73
Pasha N, Turner NC. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment. Nat Cancer. 2021;2(7):680-692. https://doi.org/10.1038/s43018-021-00229-1 PMID:35121946 DOI: https://doi.org/10.1038/s43018-021-00229-1
Hapach LA, Carey SP, Schwager SC, et al. Phenotypic heterogeneity and metastasis of breast cancer cells. Cancer Res. 2021;81(13):3649-3663. https://doi.org/10.1158/0008-5472.CAN-20-1799 PMID:33975882 DOI: https://doi.org/10.1158/0008-5472.CAN-20-1799
Lee JK, Choi YL, Kwon M, Park PJ. Mechanisms and consequences of cancer genome instability: lessons from genome sequencing studies. Annu Rev Pathol. 2016;11(1):283-312. https://doi.org/10.1146/annurev-pathol-012615-044446 PMID:26907526 DOI: https://doi.org/10.1146/annurev-pathol-012615-044446
Tellez-Gabriel M, Ory B, Lamoureux F, Heymann MF, Heymann D. Tumour heterogeneity: the key advantages of single-cell analysis. Int J Mol Sci. 2016;17(12):2142. https://doi.org/10.3390/ijms17122142 PMID:27999407 DOI: https://doi.org/10.3390/ijms17122142
McGranahan N, Swanton C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell. 2017;168(4):613-628. https://doi.org/10.1016/j.cell.2017.01.018 PMID:28187284 DOI: https://doi.org/10.1016/j.cell.2017.01.018
Kaufman PA, Bloom KJ, Burris H, et al. Assessing the discordance rate between local and central HER2 testing in women with locally determined HER2-negative breast cancer. Cancer. 2014 Sep 1;120(17):2657-2664. doi: 10.1002/cncr.28710. Epub 2014 Jun 13. PMID: 24930388 DOI: https://doi.org/10.1002/cncr.28710
Paik S, Bryant J, Tan-Chiu E, et al. Real-world performance of HER2 testing – National Surgical Adjuvant Breast and Bowel Project experience. J Natl Cancer Inst. 2002 Jun 5;94(11):852-854. doi: 10.1093/jnci/94.11.852. PMID: 12048273 DOI: https://doi.org/10.1093/jnci/94.11.852
Schrijver WAME, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ. Receptor conversion in distant breast cancer metastases: a systematic review and meta-analysis. J Natl Cancer Inst. 2018 Jun 1;110(6):568-580. doi: 10.1093/jnci/djx273. PMID: 29315431 DOI: https://doi.org/10.1093/jnci/djx273
Aktas B, Kasimir-Bauer S, Müller V, et al; DETECT Study Group. Comparison of the HER2, estrogen and progesterone receptor expression profile of primary tumor, metastases and circulating tumor cells in metastatic breast cancer patients. BMC Cancer. 2016;16(1):522. https://doi.org/10.1186/s12885-016-2587-4 PMID:27456970 DOI: https://doi.org/10.1186/s12885-016-2587-4
Schrijver WAME, van der Groep P, Hoefnagel LD, et al. Influence of decalcification procedures on immunohistochemistry and molecular pathology in breast cancer. Mod Pathol. 2016;29(12):1460-1470. https://doi.org/10.1038/modpathol.2016.116 PMID:27562496 DOI: https://doi.org/10.1038/modpathol.2016.116
Van Poznak C, Somerfield MR, Bast RC, et al. Use of biomarkers to guide decisions on systemic therapy for women with metastatic breast cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol. 2015;33(24):2695-2704. https://doi.org/10.1200/JCO.2015.61.1459 PMID:26195705 DOI: https://doi.org/10.1200/JCO.2015.61.1459
Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev. 2017 Sep 15;31(18):1827-1840. doi: 10.1101/gad.305805.117. PMID: 29051388 DOI: https://doi.org/10.1101/gad.305805.117
Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021;11(4):858-873. https://doi.org/10.1158/2159-8290.CD-20-1311 PMID:33811121
Alix-Panabières C, Pantel K. Liquid biopsy: from discovery to clinical application. Cancer Discov. 2021 Apr;11(4):858-873. doi: 10.1158/2159-8290.CD-20-1311. PMID: 33811121 DOI: https://doi.org/10.1158/2159-8290.CD-20-1311
Joosse SA, Gorges TM, Pantel K. Biology, detection, and clinical implications of circulating tumor cells. EMBO Mol Med. 2015;7(1):1-11. https://doi.org/10.15252/emmm.201303698 PMID:25398926 DOI: https://doi.org/10.15252/emmm.201303698
Keomanee-Dizon K, Shishido SN, Kuhn P. Circulating tumor cells: high-throughput imaging of CTCs and bioinformatic analysis. In: Recent results in cancer research. Vol 215. Springer: New York LLC; 2020:89-104. https://doi.org/10.1007/978-3-030-26439-0_5 DOI: https://doi.org/10.1007/978-3-030-26439-0_5
Werner SL, Graf RP, Landers M, et al. Analytical validation and capabilities of the epic CTC platform: enrichment-free circulating tumour cell detection and characterization. J Circ Biomark. 2015;4:3. https://doi.org/10.5772/60725 PMID:28936239 DOI: https://doi.org/10.5772/60725
Scher HI, Lu D, Schreiber NA, et al. Association of AR-V7 on circulating tumor cells as a treatment-specific biomarker with outcomes and survival in castration-resistant prostate cancer. JAMA Oncol. 2016;2(11):1441-1449. https://doi.org/10.1001/jamaoncol.2016.1828 PMID:27262168 DOI: https://doi.org/10.1001/jamaoncol.2016.1828
Armstrong AJ, Luo J, Nanus DM, et al. Prospective multicenter study of circulating tumor cell AR-V7 and taxane versus hormonal treatment outcomes in metastatic castration-resistant prostate cancer. JCO Precis Oncol. 2020;4(4):1285-1301. https://doi.org/10.1200/PO.20.00200 PMID:33154984 DOI: https://doi.org/10.1200/PO.20.00200
Graf RP, Hullings M, Barnett ES, Carbone E, Dittamore R, Scher HI. Clinical utility of the nuclear-localized AR-V7 biomarker in circulating tumor cells in improving physician treatment choice in castration-resistant prostate cancer. Eur Urol. 2020;77(2):170-177. https://doi.org/10.1016/j.eururo.2019.08.020 PMID:31648903 DOI: https://doi.org/10.1016/j.eururo.2019.08.020
Lu D, Krupa R, Harvey M, et al. Development of an immunofluorescent AR-V7 circulating tumor cell assay – a blood-based test for men with metastatic prostate cancer. J Circ Biomark. 2020;9(1):13-19. https://doi.org/10.33393/jcb.2020.2163 PMID:33717359 DOI: https://doi.org/10.33393/jcb.2020.2163
Scher HI, Graf RP, Schreiber NA, et al. Nuclear-specific AR-V7 protein localization is necessary to guide treatment selection in metastatic castration-resistant prostate cancer. Eur Urol. 2017;71(6):874-882. https://doi.org/10.1016/j.eururo.2016.11.024 PMID:27979426 DOI: https://doi.org/10.1016/j.eururo.2016.11.024
Scher HI, Graf RP, Schreiber NA, et al. Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR signaling inhibitors and taxanes in metastatic prostate cancer. Cancer Res. 2017;77(20):5687-5698. https://doi.org/10.1158/0008-5472.CAN-17-1353 PMID:28819021 DOI: https://doi.org/10.1158/0008-5472.CAN-17-1353
Beltran H, Jendrisak A, Landers M, et al. The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Clin Cancer Res. 2016;22(6):1510-1519. https://doi.org/10.1158/1078-0432.CCR-15-0137 PMID:26671992 DOI: https://doi.org/10.1158/1078-0432.CCR-15-0137
Bjartell AS. Re: The initial detection and partial characterization of circulating tumor cells in neuroendocrine prostate cancer. Eur Urol. 2016;70(4):700. https://doi.org/10.1016/j.eururo.2016.07.037 PMID:27481179 DOI: https://doi.org/10.1016/j.eururo.2016.07.037
Fujii T, Reuben JM, Huo L, et al. Androgen receptor expression on circulating tumor cells in metastatic breast cancer. PLoS One. 2017;12(9):e0185231. https://doi.org/10.1371/journal.pone.0185231 PMID:28957377 DOI: https://doi.org/10.1371/journal.pone.0185231
Dago AE, Stepansky A, Carlsson A, et al. Rapid phenotypic and genomic change in response to therapeutic pressure in prostate cancer inferred by high content analysis of single circulating tumor cells. PLoS One. 2014;9(8):e101777. https://doi.org/10.1371/journal.pone.0101777 PMID:25084170 DOI: https://doi.org/10.1371/journal.pone.0101777
Greene SB, Dago AE, Leitz LJ, et al. Chromosomal instability estimation based on next generation sequencing and single cell genome wide copy number variation analysis. PLoS One. 2016;11(11):e0165089. https://doi.org/10.1371/journal.pone.0165089 PMID:27851748 DOI: https://doi.org/10.1371/journal.pone.0165089
Efron B. Mathematics. Bayes' theorem in the 21st century. Science. 2013 Jun 7;340(6137):1177-1178. doi: 10.1126/science.1236536. PMID: 23744934. DOI: https://doi.org/10.1126/science.1236536
Bours MJ. Bayes’ rule in diagnosis. J Clin Epidemiol. 2021;131:158-160. https://doi.org/10.1016/j.jclinepi.2020.12.021 PMID:33741123 DOI: https://doi.org/10.1016/j.jclinepi.2020.12.021
Zhang L, Beasley S, Prigozhina NL, et al. Detection and characterization of circulating tumour cells in multiple myeloma. J Circ Biomark. 2016;5:10. https://doi.org/10.5772/64124 PMID:28936258 DOI: https://doi.org/10.33393/jcb.2016.2078
Subik K, Lee JF, Baxter L, et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl). 2010 May 20;4:35-41. Erratum in: Breast Cancer (Auckl). 2018 Oct 16;12:1178223418806626. PMID: 20697531 DOI: https://doi.org/10.1177/117822341000400004
McCabe A, Dolled-Filhart M, Camp RL, Rimm DL. Automated quantitative analysis (AQUA) of in situ protein expression, antibody concentration, and prognosis. J Natl Cancer Inst. 2005;97(24):1808-1815. https://doi.org/10.1093/jnci/dji427 PMID:16368942 DOI: https://doi.org/10.1093/jnci/dji427
Gertych A, Mohan S, Maclary S, et al. Effects of tissue decalcification on the quantification of breast cancer biomarkers by digital image analysis. Diagn Pathol. 2014;9(1):213. https://doi.org/10.1186/s13000-014-0213-9 PMID:25421113 DOI: https://doi.org/10.1186/s13000-014-0213-9
Brown LC, Halabi S, Schonhoft JD, et al. Circulating tumor cell chromosomal instability and neuroendocrine phenotype by immunomorphology and poor outcomes in men with mCRPC treated with abiraterone or enzalutamide. Clin Cancer Res. 2021;27(14):4077-4088. https://doi.org/10.1158/1078-0432.CCR-20-3471 PMID:33820782 DOI: https://doi.org/10.1158/1078-0432.CCR-20-3471
Manié E, Popova T, Battistella A, et al. Genomic hallmarks of homologous recombination deficiency in invasive breast carcinomas. Int J Cancer. 2016;138(4):891-900. https://doi.org/10.1002/ijc.29829 PMID:26317927 DOI: https://doi.org/10.1002/ijc.29829
Sansregret L, Swanton C. The role of aneuploidy in cancer evolution. Cold Spring Harb Perspect Med. 2017;7(1):a028373. https://doi.org/10.1101/cshperspect.a028373 PMID:28049655 DOI: https://doi.org/10.1101/cshperspect.a028373
Malihi PD, Graf RP, Rodriguez A, et al. Single-cell circulating tumor cell analysis reveals genomic instability as a distinctive feature of aggressive prostate cancer. Clin Cancer Res. 2020;26(15):4143-4153. https://doi.org/10.1158/1078-0432.CCR-19-4100 PMID:32341031 DOI: https://doi.org/10.1158/1078-0432.CCR-19-4100
Parkes A, Clifton K, Al-Awadhi A, et al. Characterization of bone only metastasis patients with respect to tumor subtypes. NPJ Breast Cancer. 2018;4(1):2. https://doi.org/10.1038/s41523-018-0054-x PMID:29387785 DOI: https://doi.org/10.1038/s41523-018-0054-x
Mosele F, Deluche E, Lusque A, et al. Trastuzumab deruxtecan in metastatic breast cancer with variable HER2 expression: the phase 2 DAISY trial. Nat Med. 2023;29(8):2110-2120. https://doi.org/10.1038/s41591-023-02478-2 PMID:37488289 DOI: https://doi.org/10.1038/s41591-023-02478-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Giuseppe Di Caro, Ernest Lam, David Bourdon, Martin Blankfard, Nilesh Dharajiya, Megan Slade, Emily Williams, Dong Zhang, Rick Wenstrup, Lee Schwartzberg

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-08-19
Published 2024-10-04