Withania somnifera root extract (LongeFera™) confers beneficial effects on health and lifespan of the model worm Caenorhabditis elegans

Authors

DOI:

https://doi.org/10.33393/dti.2025.3368

Keywords:

Caenorhabditis elegans, Fertility, Healthy aging, Healthspan, Longevity, Network analysis, Nutraceutical, Withania somnifera root, Worm transcriptome

Abstract

Background: Withania somnifera is among the most widely prescribed medicinal plants in traditional Indian medicine. Hydroalcoholic extract of the roots of this plant was investigated for its effects on the overall health and lifespan of the model worm Caenorhabditis elegans.

Methods: The extract’s effect on worm lifespan and fertility was observed microscopically. Worm motility was quantified through an automated worm tracker. The metabolic activity of the worms was captured using the Alamar Blue® assay. Differential gene expression in extract-treated worms was revealed through a whole transcriptome approach.

Results: Extract-exposed gnotobiotic worms, in the absence of any bacterial food, registered longer lifespan, higher fertility, better motility, and metabolic activity. Whole transcriptome analysis of the extract-treated worms revealed the differential expression of the genes associated with lifespan extension, eggshell assembly and integrity, progeny formation, yolk lipoproteins, collagen synthesis, cuticle molting, etc. This extract seems to exert its beneficial effect on C. elegans partly by triggering the remodeling of the developmentally programmed apical extracellular matrix (aECM). Differential expression of certain important genes (cpg-2cpg-3, sqt-1, dpy-4, dpy-13, and col-17) was confirmed through PCR assay too. Some of the differently expressed genes (gfat-2, unc-68, dpy-4, dpy-13, col-109, col-169, and rmd-1) in worms experiencing pro-health effect of the extract were found through co-occurrence analysis to have their homologous counterpart in humans.

Conclusions: Our results validate the suitability of W. somnifera extract as a nutraceutical for healthy aging.

Downloads

Download data is not yet available.

References

Bharti VK, Malik JK, Gupta RC. Ashwagandha: multiple health benefits. In: Nutraceuticals 2016 (pp. 717-733). Academic Press. https://doi.org/10.1016/B978-0-12-802147-7.00052-8 DOI: https://doi.org/10.1016/B978-0-12-802147-7.00052-8

Kumar S, Mathew SO, Aharwal RP, et al. A pleiotropic anticancer agent from the Indian medicinal plant Withania somnifera (L.) Dunal. Pharmaceuticals (Basel). 2023;16(2):160. https://doi.org/10.3390/ph16020160 PMID:37259311 DOI: https://doi.org/10.3390/ph16020160

Sengupta P, Agarwal A, Pogrebetskaya M, et al. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod Biomed Online. 2018;36(3):311-326. https://doi.org/10.1016/j.rbmo.2017.11.007 PMID:29277366 DOI: https://doi.org/10.1016/j.rbmo.2017.11.007

Baliga MS, Meera S, Shivashankara AR, et al. The health benefits of Indian traditional ayurvedic Rasayana (Anti-Aging) drugs: a review. Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults. 2015:151-61. https://doi.org/10.1016/B978-0-12-418680-4.00016-6 DOI: https://doi.org/10.1016/B978-0-12-418680-4.00016-6

Basudkar V, Gujrati G, Ajgaonkar S, et al. Emerging vistas for the nutraceutical withania somnifera in inflammaging. Pharmaceuticals (Basel). 2024;17(5):597. https://doi.org/10.3390/ph17050597 PMID:38794167 DOI: https://doi.org/10.3390/ph17050597

Vaidya VG, Naik NN, Ganu G, et al. Clinical pharmacokinetic evaluation of Withania somnifera (L.) Dunal root extract in healthy human volunteers: a non-randomized, single dose study utilizing UHPLC-MS/MS analysis. J Ethnopharmacol. 2024;322:117603. https://doi.org/10.1016/j.jep.2023.117603 PMID:38122911 DOI: https://doi.org/10.1016/j.jep.2023.117603

Verpoorte DR. New times for traditional medicine research. J Ethnopharmacol. 2017;197(197):1. https://doi.org/10.1016/j.jep.2017.01.018 PMID:28215856 DOI: https://doi.org/10.1016/j.jep.2017.01.018

Goyache I, Yavorov-Dayliev D, Milagro FI, et al. Caenorhabditis elegans as a screening model for probiotics with properties against metabolic syndrome. Int J Mol Sci. 2024;25(2):1321. https://doi.org/10.3390/ijms25021321 PMID:38279322 DOI: https://doi.org/10.3390/ijms25021321

Xu S, Hsiao TI, Chisholm AD. The wounded worm: using C. elegans to understand the molecular basis of skin wound healing. In: Worm 2012 (Vol. 1, No. 2, pp. 134-138). Taylor & Francis. https://doi.org/10.4161/worm.19501 DOI: https://doi.org/10.4161/worm.19501

Sifri CD, Begun J, Ausubel FM. The worm has turned – microbial virulence modeled in Caenorhabditis elegans. Trends Microbiol. 2005;13(3):119-127. https://doi.org/10.1016/j.tim.2005.01.003 PMID:15737730 DOI: https://doi.org/10.1016/j.tim.2005.01.003

Arya U, Das CK, Subramaniam JR. Caenorhabditis elegans for preclinical drug discovery. Curr Sci. 2010;1669-1680. https://www.jstor.org/stable/24073491

Kojima T, Kamei H, Aizu T, et al. Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways. Exp Gerontol. 2004;39(11-12):1595-1598. https://doi.org/10.1016/j.exger.2004.05.007 PMID:15582274 DOI: https://doi.org/10.1016/j.exger.2004.05.007

Suh Y, Atzmon G, Cho MO, et al. Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA. 2008;105(9):3438-3442. https://doi.org/10.1073/pnas.0705467105 PMID:18316725 DOI: https://doi.org/10.1073/pnas.0705467105

Kumar R, Gupta K, Saharia K, et al. Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann Neurosci. 2013;20(1):13-16. https://doi.org/10.5214/ans.0972.7531.200106 PMID:25206003 DOI: https://doi.org/10.5214/ans.0972.7531.200106

United States Pharmacopeial Convention. Ashwagandha root; powdered ashwagandha root; and powdered ashwagandha root extract, U.S. Pharmacopeia, N. Formulary (Eds.), Dietary supplements compendium. Rockville, MD, 2019.

Corsi AK, Wightman B, Chalfie M. A transparent window into biology: a primer on Caenorhabditis elegans. Genetics. 2015;200(2):387-407. https://doi.org/10.1534/genetics.115.176099 PMID:26088431 DOI: https://doi.org/10.1534/genetics.115.176099

Hamid R, Rotshteyn Y, Rabadi L, et al. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro. 2004;18(5):703-710. https://doi.org/10.1016/j.tiv.2004.03.012 PMID:15251189 DOI: https://doi.org/10.1016/j.tiv.2004.03.012

Tritten L, Braissant O, Keiser J. Comparison of novel and existing tools for studying drug sensitivity against the hookworm Ancylostoma ceylanicum in vitro. Parasitology. 2012;139(3):348-357. https://doi.org/10.1017/S0031182011001934 PMID:22333187 DOI: https://doi.org/10.1017/S0031182011001934

Bhalani DV, Nutan B, Kumar A, et al. Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines. 2022;10(9):2055. https://doi.org/10.3390/biomedicines10092055 PMID:36140156 DOI: https://doi.org/10.3390/biomedicines10092055

Mitchell DH, Stiles JW, Santelli J, et al. Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J Gerontol. 1979;34(1):28-36. https://doi.org/10.1093/geronj/34.1.28 PMID:153363 DOI: https://doi.org/10.1093/geronj/34.1.28

Aitlhadj L, Stürzenbaum SR. The use of FUdR can cause prolonged longevity in mutant nematodes. Mech Ageing Dev. 2010;131(5):364-365. https://doi.org/10.1016/j.mad.2010.03.002 PMID:20236608 DOI: https://doi.org/10.1016/j.mad.2010.03.002

Hardaker LA, Singer E, Kerr R, et al. Serotonin modulates locomotory behavior and coordinates egg-laying and movement in Caenorhabditis elegans. J Neurobiol. 2001;49(4):303-313. https://doi.org/10.1002/neu.10014 PMID:11745666 DOI: https://doi.org/10.1002/neu.10014

Nagy S, Huang YC, Alkema MJ, et al. Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion. Sci Rep. 2015;5(1):17174. https://doi.org/10.1038/srep17174 PMID:26597056 DOI: https://doi.org/10.1038/srep17174

Zavagno G, Raimundo A, Kirby A, et al. Rapid measurement of ageing by automated monitoring of movement of C. elegans populations. Geroscience. 2024;46(2):2281-2293. https://doi.org/10.1007/s11357-023-00998-w PMID:37940787 DOI: https://doi.org/10.1007/s11357-023-00998-w

Longhin EM, El Yamani N, Rundén-Pran E, et al. The alamar blue assay in the context of safety testing of nanomaterials. Front Toxicol. 2022;4:981701. https://doi.org/10.3389/ftox.2022.981701 PMID:36245792 DOI: https://doi.org/10.3389/ftox.2022.981701

Banse SA, Lucanic M, Sedore CA, et al. Automated lifespan determination across Caenorhabditis strains and species reveals assay-specific effects of chemical interventions. Geroscience. 2019;41:945-960. https://doi.org/10.1007/s11357-019-00108-9 DOI: https://doi.org/10.1007/s11357-019-00108-9

Bansal A, Zhu LJ, Yen K, et al. Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc Natl Acad Sci USA. 2015;112(3):E277-E286. https://doi.org/10.1073/pnas.1412192112 PMID:25561524 DOI: https://doi.org/10.1073/pnas.1412192112

Ravi B, Garcia J, Collins K. The HSN egg-laying command neurons regulate the defecation motor program in Caenorhabditis elegans: integration. MicroPubl Biol. 2019;2019. PMID:32550458

Klass MR. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev. 1977;6(6):413-429. https://doi.org/10.1016/0047-6374(77)90043-4 PMID:926867 DOI: https://doi.org/10.1016/0047-6374(77)90043-4

Pickett CL, Dietrich N, Chen J, et al. Mated progeny production is a biomarker of aging in Caenorhabditis elegans. G3 (Bethesda). 2013;3(12):2219-2232. https://doi.org/10.1534/g3.113.008664 PMID:24142929 DOI: https://doi.org/10.1534/g3.113.008664

Herndon LA, Schmeissner PJ, Dudaronek JM, et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature. 2002;419(6909):808-814. https://doi.org/10.1038/nature01135 PMID:12397350 DOI: https://doi.org/10.1038/nature01135

Ruegenberg S, Horn M, Pichlo C, et al. Loss of GFAT-1 feedback regulation activates the hexosamine pathway that modulates protein homeostasis. Nat Commun. 2020;11(1):687. https://doi.org/10.1038/s41467-020-14524-5 PMID:32019926 DOI: https://doi.org/10.1038/s41467-020-14524-5

Denzel MS, Storm NJ, Gutschmidt A, et al. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell. 2014;156(6):1167-1178. https://doi.org/10.1016/j.cell.2014.01.061 PMID:24630720 DOI: https://doi.org/10.1016/j.cell.2014.01.061

Published

2025-04-02

How to Cite

Thakkar, N., Gajera, G., Mehta, D., Nair, S., & Kothari, V. (2025). Withania somnifera root extract (LongeFera™) confers beneficial effects on health and lifespan of the model worm Caenorhabditis elegans. Drug Target Insights, 19(1), 18–30. https://doi.org/10.33393/dti.2025.3368
Received 2024-11-04
Accepted 2025-03-05
Published 2025-04-02

Metrics