Efficacy of tablet-based applications for mental training in preserving cognitive abilities of older adults
DOI:
https://doi.org/10.33393/abtpn.2019.282Keywords:
aging, cognitive decline, cognitive training, mental training, older adultsAbstract
Background and aims: Nonpathological, age-related cognitive decline is among the most feared consequences of aging. Evidence suggests that the continued use of mental abilities can slow down cognitive decline. We developed two tablet-based applications for the mental training (ElasticaMente) and social interaction/entertainment (iNonni) of older adults. The aim of this study was to evaluate their effect on cognitive performance.
Materials and methods: This was an exploratory study of 8 months duration. Sixty healthy residents of a senior community center aged ≥60 years were recruited and divided into three groups: participants in Groups 1 and 2 received a tablet with ElasticaMente and iNonni (Group 1, n = 20) or with iNonni only (Group 2, n = 20); participants in Group 3 (n = 20) did not receive any tablet. Participants in Groups 1 and 2 were instructed to use the applications three times a week (each session ~45 minutes). Cognitive performance was assessed at baseline (T0) and after 8 months (T1) using a battery of six validated tests.
Results: In Group 1, cognitive test scores remained consistently stable from T0 to T1, suggesting maintenance of cognitive abilities. In contrast, in Groups 2 and 3, scores worsened from T0 to T1 across all tests. Comparison of the changes from T0 to T1 revealed statistical significance for Group 1 versus Group 3, but not for Group 1 versus Group 2 and Group 2 versus Group 3.
Conclusion: The 8 months use of the applications ElasticaMente and iNonni was associated with a significant benefit in terms of preserved cognitive performance compared with no tablet-based activity. The potential contribution of ElasticaMente to the attenuation of cognitive decline should be further investigated. (Digital Health)
References
- Deary IJ, Corley J, Gow AJ, et al. Age-associated cognitive decline. Br Med Bull. 2009;92:135-152.
- Chan MY, Haber S, Drew LM, Park DC. Training older adults to use tablet computers: does it enhance cognitive function? Gerontologist. 2016;56(3):475-484.
- Lee SH, Kim YB. Which type of social activities may reduce cognitive decline in the elderly? A longitudinal population-based study. BMC Geriatr. 2016;16(1):165.
- Marioni RE, Proust-Lima C, Amieva H, et al. Social activity, cognitive decline and dementia risk: a 20-year prospective cohort study. BMC Public Health. 2015;15:1089.
- Mitchell MB, Cimino CR, Benitez A, et al. Cognitively stimulating activities: effects on cognition across four studies with up to 21 years of longitudinal data. J Aging Res. 2012;2012:461592.
- Amieva H, Mokri H, Le Goff M, et al. Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: a study of 20 years of cognitive decline. Brain. 2014;137(Pt 4):1167-1175.
- Cheng ST. Cognitive reserve and the prevention of dementia: the role of physical and cognitive activities. Curr Psychiatry Rep. 2016;18(9):85.
- Nucci M, Mapelli D, Mondini S. Cognitive Reserve Index questionnaire (CRIq): a new instrument for measuring cognitive reserve. Aging Clin Exp Res. 2012;24(3):218-226.
- Willis SL, Schaie KW. Cognitive training and plasticity: theoretical perspective and methodological consequences. Restor Neurol Neurosci. 2009;27(5):375-389.
- León I, Garcia-García J, Roldán-Tapia L. Estimating cognitive reserve in healthy adults using the Cognitive Reserve Scale. PLoS One. 2014;9(7):e102632.
- Ball K, Berch DB, Helmers KF, et al; for the ACTIVE Study Group. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288(18):2271-2281.
- Hardy JL, Nelson RA, Thomason ME, et al. Enhancing cognitive abilities with comprehensive training: a large, online, randomized, active-controlled trial. PLoS One. 2015;10(9):e0134467.
- Owen AM, Hampshire A, Grahn JA, et al. Putting brain training to the test. Nature. 2010;465(7299):775-778.
- Miller KJ, Siddarth P, Gaines JM, et al. The memory fitness program: cognitive effects of a healthy aging intervention. Am J Geriatr Psychiatry. 2012;20(6):514-523.
- Rebok GW, Ball K, Guey LT, et al; for the ACTIVE Study Group. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014;62(1):16-24.
- Smith GE, Housen P, Yaffe K, et al. A cognitive training program based on principles of brain plasticity: results from the Improvement in Memory with Plasticity-based Adaptive Cognitive Training (IMPACT) study. J Am Geriatr Soc. 2009;57(4):594-603.
- Wolinsky FD, Vander Weg MW, Howren MB, Jones MP, Dotson MM. A randomized controlled trial of cognitive training using a visual speed of processing intervention in middle aged and older adults. PLoS One. 2013;8(5):e61624.
- Willis SL, Tennstedt SL, Marsiske M, et al; for the ACTIVE Study Group. Long-term effects of cognitive training on everyday functional outcomes in older adults. JAMA. 2006;296(23):2805-2814.
- Chiu HL, Chu H, Tsai JC, et al. The effect of cognitive-based training for the healthy older people: a meta-analysis of randomized controlled trials. PLoS One. 2017;12(5):e0176742.
- Kane RL, Butler M, Fink HA, et al. Interventions to prevent age-related cognitive decline, mild cognitive impairment, and clinical Alzheimer’s-type dementia. Comparative Effectiveness Review No. 188. Report No. 17-EHC008-EF. Rockville, MD: Agency for Healthcare Research and Quality, 2017.
- Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res Rev. 2014;15:28-43.
- Lampit A, Hallock H, Valenzuela M. Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 2014;11(11):e1001756.
- Anguera JA, Boccanfuso J, Rintoul JL, et al. Video game training enhances cognitive control in older adults. Nature. 2013;501(7465):97-101.
- Anguera JA, Gazzaley A. Video games, cognitive exercises, and the enhancement of cognitive abilities. Curr Opin Behav Sci. 2015;4:160-165.
- Lu MH, Lin W, Yueh HP. Development and evaluation of a cognitive training game for older people: a design-based approach. Front Psychol. 2017;8:1837.
- Folstein MF, Folstein SE, McHugh PR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-198.
- Measso G, Cavarzeran F, Zappala G, et al. The Mini-Mental State Examination: normative study of an Italian random sample. Dev Neuropsychol. 1993;9:77-85.
- Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695-699.
- Santangelo G, Siciliano M, Pedone R, et al. Normative data for the Montreal Cognitive Assessment in an Italian population sample. Neurol Sci. 2015;36(4):585-591.
- Mondini S, Mapelli D, Vestri A, Bisiacchi PS. Esame neuropsicologico breve 2: Una batteria di test per lo screening neuropsicologico. [A battery of tests for neuropsychological screening]. Raffaello Cortina Editore, Milano. Libro 2011. [Article in Italian].
- Appollonio I, Leone M, Isella V, et al. The Frontal Assessment Battery (FAB): normative values in an Italian population sample. Neurol Sci. 2005;26(2):108-116.
- Dubois B, Slachevsky A, Litvan I, Pillon B. The FAB: a Frontal Assessment Battery at bedside. Neurology. 2000;55(11):1621-1626.
- Iavarone A, Ronga B, Pellegrino L, et al. The Frontal Assessment Battery (FAB): normative data from an Italian sample and performances of patients with Alzheimer’s disease and frontotemporal dementia. Funct Neurol. 2004;19(3):191-195.
- Jones G, Macken B. Questioning short-term memory and its measurement: why digit span measures long-term associative learning. Cognition. 2015;144:1-13.
- Measso G, Zappala G, Cavarzeran F, et al. Raven’s colored progressive matrices: a normative study of a random sample of healthy adults. Acta Neurol Scand. 1993;88(1):70-74.
- Cattell RB. Theory of fluid and crystallized intelligence: a critical experiment. J Educ Psychol. 1963;54(1):1-22.
- Vaportzis E, Martin M, Gow AJ. A tablet for healthy ageing: the effect of a tablet computer training intervention on cognitive abilities in older adults. Am J Geriatr Psychiatry. 2017;25(8):841-851.