Does the modified shuttle test exhibit a ceiling effect in healthy and cystic fibrosis children and adolescents?
DOI:
https://doi.org/10.33393/aop.2024.3191Keywords:
Adolescent, Child, Cystic fibrosis, Exercise test, Exercise toleranceAbstract
Introduction: The modified shuttle test-15 (MST-15) is a valid alternative for assessing exercise capacity when a cardiopulmonary exercise testing is not feasible. This study aims to describe the percentage of healthy and cystic fibrosis (CF) children and adolescents reaching the MST-15 ceiling. Additionally, it examines associations between MST-15 distance and demographic, anthropometric, and lung function data.
Methods: This retrospective cross-sectional study involved 286 healthy volunteers (11.5 ± 3.3 years) and 70 CF patients (11.9 ± 4.4 years). Data on age, gender, weight, height, body mass index, lung function, and MST-15 were collected. The ceiling effect was determined by the absolute and relative number of participants reaching the 15th level. Univariate linear regression and correlation analyses were conducted to explore associations with MST-15 distance.
Results: A ceiling effect for the MST-15 was found in 19 healthy participants (6.6%) and 1 CF patient (1.4%). The ceiling effect was correlated with age (r = 0.777 for healthy; r = 0.538 for CF), with no cases under 10 years and reaching 25% in healthy participants aged 17-19. Regression analysis showed significant associations between age and MST-15 distance in healthy participants (β = 53.6) and CF patients (β = 32.1). Additionally, sex was significantly associated with MST-15 distance in healthy participants (β = 107.0), and FEV1 with MST-15 distance in CF patients (β = 31.0).
Conclusions: The ceiling effect on the MST-15 is age-dependent, with no occurrences observed in children under 10 years and a gradual increase in incidence as participants age.
Downloads
References
Cutting GR. Cystic fibrosis genetics: from molecular understanding to clinical application. Nat Rev Genet. 2015;16(1):45-56. https://doi.org/10.1038/nrg3849 PMID:25404111
Almajed A, Lands LC. The evolution of exercise capacity and its limiting factors in cystic fibrosis. Paediatr Respir Rev. 2012;13(4):195-199. https://doi.org/10.1016/j.prrv.2012.01.001 PMID:23069115
van de Weert-van Leeuwen PB, Slieker MG, Hulzebos HJ, Kruitwagen CLJJ, van der Ent CK, Arets HGM. Chronic infection and inflammation affect exercise capacity in cystic fibrosis. Eur Respir J. 2012;39(4):893-898. https://doi.org/10.1183/09031936.00086211 PMID:21885387
Pianosi P, LeBlanc J, Almudevar A. Relationship between FEV1 and peak oxygen uptake in children with cystic fibrosis. Pediatr Pulmonol. 2005;40(4):324-329. https://doi.org/10.1002/ppul.20277 PMID:16082708
Gruet M, Troosters T, Verges S. Peripheral muscle abnormalities in cystic fibrosis: Etiology, clinical implications and response to therapeutic interventions. J Cyst Fibros. 2017;16(5):538-552. https://doi.org/10.1016/j.jcf.2017.02.007 PMID:28262570
Donadio MVF, Barbosa MA, Vendrusculo FM, et al. Mechanisms of ventilatory limitation to maximum exercise in children and adolescents with chronic airway diseases. Pediatr Pulmonol. 2023;58(11):3293-3302. https://doi.org/10.1002/ppul.26659 PMID:37671821
Pérez M, Groeneveld IF, Santana-Sosa E, et al. Aerobic fitness is associated with lower risk of hospitalization in children with cystic fibrosis. Pediatr Pulmonol. 2014;49(7):641-649. https://doi.org/10.1002/ppul.22878 PMID:24019231
Vendrusculo FM, Heinzmann-Filho JP, da Silva JS, Perez Ruiz M, Donadio MVF. Peak oxygen uptake and mortality in cystic fibrosis: systematic review and meta-analysis. Respir Care. 2019;64(1):91-98. https://doi.org/10.4187/respcare.06185 PMID:30206131
Saynor ZL, Gruet M, McNarry MA, et al; European Cystic Fibrosis Society Exercise Working Group. Guidance and standard operating procedures for functional exercise testing in cystic fibrosis. Eur Respir Rev. 2023;32(169):230029. https://doi.org/10.1183/16000617.0029-2023 PMID:37558263
Tomlinson OW, Trott J, Williams CA, et al. Challenges in implementing routine cardiopulmonary exercise testing in cystic fibrosis clinical practice: a single-centre review. SN Compr Clin Med 2020 23. 2020;2(3):327-331. https://doi.org/10.1007/s42399-020-00239-7
Saglam M, Vardar-Yagli N, Savci S, et al. Six minute walk test versus incremental shuttle walk test in cystic fibrosis. Pediatr Int. 2016;58(9):887-893. https://doi.org/10.1111/ped.12919 PMID:26756566
Singh SJ, Morgan MDL, Scott S, Walters D, Hardman AE. Development of a shuttle walking test of disability in patients with chronic airways obstruction. Thorax. 1992;47(12):1019-1024. https://doi.org/10.1136/thx.47.12.1019 PMID:1494764
Selvadurai HC, Cooper PJ, Meyers N, et al. Validation of shuttle tests in children with cystic fibrosis. Pediatr Pulmonol. 2003;35(2):133-138. https://doi.org/10.1002/ppul.10197 PMID:12526075
Bradley J, Howard J, Wallace E, Elborn S. Validity of a modified shuttle test in adult cystic fibrosis. Thorax. 1999;54(5):437-439. https://doi.org/10.1136/thx.54.5.437 PMID:10212110
Bradley J, Howard J, Wallace E, Elborn S. Reliability, repeatability, and sensitivity of the modified shuttle test in adult cystic fibrosis. Chest. 2000;117(6):1666-1671. https://doi.org/10.1378/chest.117.6.1666 PMID:10858400
Rogers D, Smith P, John N, Oliver W, Doull I. Validity of a modified shuttle walk test as a measure of exercise tolerance in paediatric CF patients. J Cyst Fibros. 2002;1(suppl 1):22. https://www.sciencedirect.com/journal/journal-of-cystic-fibrosis/vol/1/suppl/S1
Elkins M, Dentice R, Bye P. Validation of the MST-25: an extension of the modified shuttle test (MST). J Cyst Fibros. 2009;8:S70. https://doi.org/10.1016/S1569-1993(09)60276-9
Corda J, Holland A, Berry CD, Westrupp N, Cox NS. Validation of the 25 level modified shuttle test in children with cystic fibrosis. Pediatr Pulmonol. 2023;58(8):2240-2248. https://doi.org/10.1002/ppul.26452 PMID:37144876
ABRAN - Associação Brasileira de Nutrologia. Calculadoras, IMC Infantil. https://abran.org.br/calculadoras/imc-infantil. (Accessed July 2024).
Quanjer PH, Stanojevic S, Cole TJ, et al; ERS Global Lung Function Initiative. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324-1343. https://doi.org/10.1183/09031936.00080312 PMID:22743675
Lee TWR, Brownlee KG, Conway SP, Denton M, Littlewood JM. Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J Cyst Fibros. 2003;2(1):29-34. https://doi.org/10.1016/S1569-1993(02)00141-8 PMID:15463843
Graham BL, Steenbruggen I, Miller MR, et al. Standardization of Spirometry 2019 Update. An official American Thoracic Society and European Respiratory Society Technical Statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88. https://doi.org/10.1164/rccm.201908-1590ST PMID:31613151
Quanjer PH, Hall GL, Stanojevic S, Cole TJ, Stocks J; Global Lungs Initiative. Age- and height-based prediction bias in spirometry reference equations. Eur Respir J. 2012;40(1):190-197. https://doi.org/10.1183/09031936.00161011 PMID:22183491
Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428-1446. https://doi.org/10.1183/09031936.00150314 PMID:25359355
Lanza FC, Zagatto EP, Silva JC, et al. Reference equation for the incremental shuttle walk test in children and adolescents. J Pediatr. 2015;167(5):1057-1061. https://doi.org/10.1016/j.jpeds.2015.07.068 PMID:26323195
Amedro P, Matecki S, Pereira dos Santos T, et al. Reference values of cardiopulmonary exercise test parameters in the contemporary paediatric population. Sport Med - Open. 2023;9(1):68. https://doi.org/10.1186/s40798-023-00622-3
Vendrusculo FM, Aquino ES, Campos NE, et al. Determinants of exercise capacity assessed with the modified shuttle test in individuals with cystic fibrosis. Respir Care. 2020;65(5):643-649. https://doi.org/10.4187/respcare.07326 PMID:32047118
Doeleman WR, Takken T, Bronsveld I, Hulzebos EHJ. Relationship between lung function and Modified Shuttle Test performance in adult patients with cystic fibrosis: a cross-sectional, retrospective study. Physiotherapy. 2016;102(2):184-188. https://doi.org/10.1016/j.physio.2015.10.015 PMID:27101722
Rogol AD. Sex steroids, growth hormone, leptin and the pubertal growth spurt. Endocr Dev. 2010;17:77-85. https://doi.org/10.1159/000262530 PMID:19955758
Pastré J, Prévotat A, Tardif C, Langlois C, Duhamel A, Wallaert B. Determinants of exercise capacity in cystic fibrosis patients with mild-to-moderate lung disease. BMC Pulm Med. 2014;14(1):74. https://doi.org/10.1186/1471-2466-14-74 PMID:24884656
Rysgaard UK, Pedersen CL, Jensen JH, et al. Change in exercise capacity measured by Cardio-pulmonary Exercise Testing (CPET) in Danish people with cystic fibrosis after initiation of treatment with Lumacaftor/Ivacaftor and Tezacaftor/Ivacaftor. J Cyst Fibros. 2022;21(5):844-849. https://doi.org/10.1016/j.jcf.2022.05.009 PMID:35667973
Wark PAB, Cookson K, Thiruchelvam T, Brannan J, Dorahy DJ. Lumacaftor/Ivacaftor improves exercise tolerance in patients with cystic fibrosis and severe airflow obstruction. BMC Pulm Med. 2019;19(1):106. https://doi.org/10.1186/s12890-019-0866-y PMID:31208380
Valencia-Peris A, Lizandra J, Moya-Mata I, Gómez-Gonzalvo F, Castillo-Corullón S, Escribano A. Comparison of physical activity and sedentary behaviour between schoolchildren with cystic fibrosis and healthy controls: a gender analysis. Int J Environ Res Public Health. 2021;18(10):5375. https://doi.org/10.3390/ijerph18105375 PMID:34070042
Radtke T, Smith S, Nevitt SJ, Hebestreit H, Kriemler S. Physical activity and exercise training in cystic fibrosis. Cochrane Database Syst Rev. 2022;8(8):CD002768. PMID:35943025
Ramananda Y, Naren AP, Arora K. Functional consequences of CFTR interactions in cystic fibrosis. Int J Mol Sci. 2024;25(6):3384. https://doi.org/10.3390/ijms25063384 PMID:38542363
Vendrusculo FM, Heinzmann-Filho JP, Campos NE, Gheller MF, de Almeida IS, Donadio MVF. Prediction of peak oxygen uptake using the modified shuttle test in children and adolescents with cystic fibrosis. Pediatr Pulmonol. 2019;54(4):386-392. https://doi.org/10.1002/ppul.24237 PMID:30614221
Del Corral T, Gómez Sánchez Á, López-de-Uralde-Villanueva I. Test-retest reliability, minimal detectable change and minimal clinically important differences in modified shuttle walk test in children and adolescents with cystic fibrosis. J Cyst Fibros. 2020;19(3):442-448. https://doi.org/10.1016/j.jcf.2019.10.007 PMID:31678012
Donadio MVF, Vendrusculo FM, Campos NE, et al. The modified shuttle test as a predictor of risk for hospitalization in youths with cystic fibrosis: a two-year follow-up study. J Cyst Fibros. 2021;20(4):648-654. https://doi.org/10.1016/j.jcf.2020.12.014 PMID:33422453
Léger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93-101. https://doi.org/10.1080/02640418808729800 PMID:3184250
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Marta Amor-Barbosa, Fernanda Salazar-Pérez, Fernanda Maria Vendrusculo, Maria Amélia Bagatini, Evanirso da Silva Aquino, Márcio Vinícius Fagundes Donadio
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-11-12
Published 2024-12-18