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occupational factors (1). Despite excellent control of local 
disease, prognosis remains poor due to metastatic progres-
sion affecting ~50% of patients (2-4). Mortality rates for UM 
are unchanged over the past decades (1). 

 Extracellular vesicles (EVs) have emerged as biomarkers 
in various cancers and provide valuable clinical information 
(5,6). Their use as a biomarker assay has gained interest 
as a new tool for monitoring of cancer patients; however, 
standardization and validation of EVs as a biomarker are 
needed (4,7). 

EVs are small lipid bilayer particles released from all types 
of cells and found in different body fluids, most commonly the 
blood, but have also been detected in aqueous humor (AH) (8,9). 
EVs are classified mainly into exosomes (50-100 nm), microves-
icles (100-1000 nm), and apoptotic bodies (50 nm-2 µm)  
based on their biogenesis, number, size, distinct biological 
functions and markers (10-16). Exosomes are a constitutive 
and abundant component of the vitreous (17).

 EVs are involved in the transfer of biological macromole-
cules to recipient cells, and modulating various physiological 

Introduction

Uveal melanoma (UM) is a primary intraocular tumor in 
adults that accounts for less than 5% of all melanoma cases 
(1,2). The incidence of UM has remained stable at ~5.1 per 
million since the 1970s with subtle differences depend-
ing on geographic location, as well as environmental and 
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and pathological processes, such as pathogen dissemination 
and regulation of the host immune system (18-20). Recent 
studies have shown that tumor cells release large amounts 
of EVs that can be uptaken by malignant and stromal cells, 
inducing tumor progression (21,22). They have been shown 
to play a major role in mediating metastasis, ranging from 
oncogenic reprogramming of malignant cells to the forma-
tion of pre-metastatic niches (23-25). Furthermore, our group 
and others have shown that cancer-derived exosomes can 
transfer bioactive molecules such as proteins, DNA, mRNAs, 
and miRNAs to recipient cells, thereby changing their func-
tion (26-29).

In ocular and cutaneous melanoma, the concentration 
of EVs and proteins is increased in patients compared to 
healthy individuals and has been shown to correlate with dis-
ease progression (30,31). Moreover, the profile of circulating 
EV-derived miRNAs is often altered in human cancers, and 
EVs from UM patients have been shown to contain miR-146, 
a potential circulating marker in UM (32). Recently, we have 
reported that the number of EVs produced and the profile 
of tumor-associated proteins vary between normal mela-
nocytes and UM cell lines, and also between primary and 
metastatic UM cell lines (33). EVs released by metastatic mel-
anoma cells were enriched in proteins (9,10,23) involved in 
the pre-metastatic niche formation (25), suggesting their role 
in preparing the environment for colonization by circulating 
tumor cells (CTCs). 

 There is a lack of detailed characterization of EVs in this  
disease as well as in nonblood-based liquid biopsy. In this study, 
our aim was to determine the proteomic profile of EVs isolated 
from AH, vitreous humor (VH), and plasma from patients with 
UM and to compare with cancer-free control patients.

Materials and methods
Patients

A total of 14 participants were enrolled for this study: 
7 patients diagnosed with primary UM, and 7 healthy con-
trols undergoing cataract surgery at the Department of 
Ophthalmology, Federal University of São Paulo (UNIFESP/
EPM), Brazil. The patients were recruited from July 2019 to 
December 2019 at the Department of Ophthalmology of the 
UNIFESP/EPM. The clinical characteristics of the study popu-
lation are described in Table I. 

This study was approved by the ethics committee inves-
tigational review board (CEP number 2198149) and adhered 
to the principles of the Declaration of Helsinki and Resolution 
196/96 of the Ministry of Health, Brazil. Informed consent 
was obtained from all participants.

Sample collection

AH and plasma samples were collected from UM 
patients and controls. Additionally, VH samples were col-
lected from UM patients. Peripheral blood (10 mL) was 
collected in ethylenediaminetetraacetic acid (EDTA) tubes. 
The tubes were centrifuged for 10 minutes at 1,900 × g), 
and plasma were collected. VH and AH samples from UM 
patients were collected from the enucleated eyes after 
the surgery with a syringe and fine needle. In the control 
group, AH samples were collected during cataract surgery. 
All routine surgical procedures were followed. All col-
lected samples were kept at −80°C until the experimental  
procedure.

TABLE I - Clinical features of patients enrolled in this study

Patients Sex Age (years) Cell Types Size TNM

CAT1 Male 70 N/A N/A N/A

CAT2 Female 77 N/A N/A N/A

CAT3 Female 82 N/A N/A N/A

CAT4 Female 77 N/A N/A N/A

CAT5 Female 75 N/A N/A N/A

CAT6 Male 76 N/A N/A N/A

CAT7 Female 63 N/A N/A N/A

UM1 Male 72 Mixed UM, predominance of spindle cells affecting the ciliary body and choroid 1.9 × 0.6 pT4E

UM2 Female 86 Epithelioid choroidal melanoma 1.2 × 1.1 pT3B

UM3 Female 53 Mixed choroidal melanoma, predominance of spindle cells 1.3 × 1.0 pT3A

UM5 Male 63 Mixed UM, predominance of spindle cells infiltrating the choroid and ciliary body 1.2 × 1.5 pT3B

UM6 Female 61 Mixed UM, predominance of epithelioid cells 1.0 × 0.8 pT2

UM8 Female 65 Mixed UM, predominance of spindle cells infiltrating the choroid and ciliary body 2.8 × 0.7 pT4B

UM9 Female 39 Mixed choroidal melanoma, predominance of epithelioid cells 1.5 × 1.2 pT3A

Size refers to tumor size (base diameter × thickness [cm × cm]).
CAT = cataract, control group; N/A = not applicable; TNM = tumor, node, metastasis; UM = uveal melanoma.
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EV purification and characterization

The protocol for EV isolation was performed according to 
the guidelines of the International Society for Extracellular 
Vesicles (ISEV) (10). Samples were centrifuged at 16,000 × g 
for 10 minutes at 4°C to eliminate cellular debris. Then, EV 
isolation was performed using the exoEasy Maxi Kit (Qiagen, 
Valencia, CA, USA) according to the manufacturer’s instructions 
(10,11,34-36). Isolated EVs were diluted 100 × in phosphate- 
buffered saline (PBS) and analyzed by nanoparticle track-
ing analysis (NTA) using the NanoSight NS300 instrument 
(Malvern Analytical, UK). PBS was used as a diluent. Samples 
and diluent were read in triplicates for 30 seconds at  
20 frames per second. The NTA 3.2 software was used to esti-
mate the concentration and size of the particles.

Immunoblotting

EVs isolated from patients and controls were lysed in RIPA 
buffer containing complete mini protease inhibitors (Sigma) 
at 4°C for 30 minutes. Samples were sonicated for 2 seconds 
(three times), and spun at 13,000 × g for 30 minutes at 4°C. 
Protein concentrations were quantified by the BCA assay 
(Thermo Fisher Scientific). Protein samples were processed 
for immunoblotting and mass spectrometry (MS).

EV-derived proteins (20 µg) were separated using 12% Mini-
PROTEAN® precast polyacrylamide gel (Bio-Rad). Proteins 
were transferred onto polyvinylidene difluoride (PVDF) mem-
branes (Bio-Rad). Membranes were blocked for 1 hour at room 
temperature with 5% nonfat dry milk in 1X Tris-buffer saline 
with 0.05% Tween 20 (TBST). Membranes were probed with 
anti-TSG101 (Abcam; 1:1,000) and anti-CD63 (Abcam; 1:1,000), 
anti-Alix (ThermoFisher Scientific 1:1,000), anti-β-actin 
(Sigma 1:1,000), anti-tenascin C (abcam 1:1,000), anti-vimen-
tin (abcam 1:500) primary antibodies, followed by horseradish 
peroxidase (HRP)-conjugated goat anti-rabbit (Sigma 1:1,000) 
and goat anti-mouse (Sigma 1:3,000) secondary antibodies. 
Membranes were washed five times for 10 minutes each time 
after each incubation and developed using ECL prime Western 
blot detection (GE Healthcare). Protein signals were visualized 
using the ChemiDoc XRS +  System.

MS analysis

MS analysis was performed in nine samples [AH (n = 3), 
plasma (n = 3), and VH (n = 3)] from UM-5, UM-6, and UM-8 
patients; 20 µg of EV proteins from each sample was loaded 
onto a single stacking gel band to remove contaminants 
such as lipids, detergents, and salts. Each sample was run in 
duplicate. 

The gel band was reduced with DTT (dithiothreitol), alkyl-
ated with iodoacetic acid, and digested with trypsin. Extracted 
peptides were resolubilized in 0.1% aqueous formic acid and 
loaded onto a Thermo Scientific Acclaim PepMap (75 μm 
inner diameter × 2 cm, C18 3 μm particle size) precolumn 
and then onto an Acclaim PepMap EASY-Spray (75 μm inner 
diameter × 15 cm with 2 μm C18, 2 µm beads) analytical  
column separation using a Dionex UltiMate 3000 uHPLC at 
250 nL/min with a gradient of 2-35% organic (0.1% formic 
acid in acetonitrile) over 3 hours. Peptides were analyzed 

using a Thermo Orbitrap Fusion MS operating at 120,000 
resolution (full width at half maximum in MS1) with Higher 
energy Collisional Dissociation (HCD) sequencing (15,000 
resolution) at top speed for all peptides with a charge of  
2+ or greater. The MS raw data were converted into *.mgf for-
mat (Mascot generic format) for searching using the Mascot 
2.6.2 search engine (Matrix Science) against human protein 
sequences (Uniprot 2019). The database search results were 
loaded onto Scaffold Q+ Scaffold_4.10.0 (Proteome Sciences) 
for spectral counting, statistical treatment, data visualization, 
and quantification. Protein threshold >99%, peptide thresh-
old >95%, and two of a minimum number of unique peptides 
were applied in Scaffold Q+ to increase the confidence level 
of identified proteins. Additional filters such as p-value cut-off 
of 0.05 and a fold-value change of ≥2 were used to identify 
the differential expression of proteins. The identified protein 
list in Scaffold was exported to Microsoft Excel and uploaded 
into the DAVID Bioinformatics database (version 6.8) for gene 
ontology (GO) analyses (i.e., biological process, cellular com-
ponent, and KEGG pathway). In addition, bioinformatic anal-
ysis and Vesiclepedia database (37) search were performed 
using the FunRich software (version 3.1.3) (37-39).

Statistical analysis

Statistical analysis was performed using the GraphPad 
software (Prism, version 5.00 for Windows; GraphPad, San 
Diego, CA). The Mann-Whitney test was used to determine 
the statistical difference between respective groups. The 
results are expressed as mean ± standard deviation (SD). A 
p-value < 0.05 was considered significant.

Results 
Characterization and isolation of EVs from plasma, AH,  
and VH

EVs were isolated from the plasma, AH, and VH of 
UM patients, and AH and plasma of cataract patients. 
Immunoblotting analysis showed the expression of EV 
markers CD63, TSG101, and Alix with different expres-
sion levels depending on the analyzed samples (Fig. 1A, B, 
and Supplementary Figure A). The expression of CD63 and 
Alix was higher in UM EVs than in CAT EVs (Fig. 1A, and 
Supplementary Figure A). Moreover, the expression of both 
CD63 and TSG101 was higher in EVs isolated from VH and 
plasma than in EVs isolated from AH (Fig. 1A, B). NTA from 
all samples showed that EVs ranged from 80 to 442 nm in 
size, with similar 10 percentile mean (D10) size (133 nm, 135 
nm, and 139 nm) in plasma, AH, and VH, respectively (Fig. 1C, 
D). When analyzing sizes of isolated UM EVs, no difference 
was observed in all samples: 219 ± 26 nm (range: 168-241) in 
plasma, 211 ± 37 nm (range: 173-265) in AH, and 216 ± 71 nm  
(range: 110-314) in VH (Fig. 1D). Also, no difference was 
observed in the average size of EVs from AH and plasma 
between the UM and CAT groups (Fig. 1D).

In the UM cohort, the concentration of EVs ranged from 
2.6 × 109 to 9 × 1010 particles/mL in AH, VH, and plasma sam-
ples (Fig. 1E). The mean concentration of EVs in VH (6.6 × 1010 
particles/mL) was significantly higher when compared to AH 
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Fig. 1 - Characterization of 
EVs derived from AH, VH, and 
plasma. A,B) Proteins isolated 
from the different assay EVs 
(seven UM samples and two 
CAT samples) were analyzed 
by Western blot for the ex-
pression of specific EV markers 
(i.e., CD63 and TSG101). C)  
Nanosight analyses of EVs. 
Representative size distribu-
tion histograms showing data 
of EVs from AH, plasma, and 
VH. Note that mean EV sizes 
are similar. Histograms are 
displayed as averaged EV con-
centration (black line) and the 
variation between four repea-
ted measurements indicating 
±1 standard error of the mean 
(red outline). D) Mean size of 
EVs isolated from AH and pla-
sma of UM (n = 7) and cataract-
suffering (CAT, n = 7) patients, 
and from VH of UM patients 
(n = 7). E) Concentrations of 
EVs isolated from different 
analytes of seven UM patients. 
**p ˂ 0.01. F,G) Concentrations 
of EVs isolated from AH (F) and 
plasma (G) of UM (n = 7) and 
cataract-suffering (CAT, n = 7) 
patients. ***p ˂ 0.001. H and I) 
The concentrations of EVs iso-
lated from the plasma of UM 
patients (n = 7) were plotted 
against ocular tumor size (base 
diameter (H) and thickness (I)). 
No correlation was found as 
shown by the correlation co-
efficient (R). Legend close to 
graph D applies to graphs D, F, 
and G. AH = aqueous humor; 
CAT = cataract; EV = extracel-
lular vesicle; VH = vitreous hu-
mor; UM = uveal melanoma.

(1010 particles/mL, p < 0.01) and plasma (2.7 × 1010 particles/
mL, p < 0.01) (Fig. 1E). No difference was observed in the 
concentration of AH-derived EVs between the UM and CAT 
groups. In contrast, the concentration of plasma-derived EVs 
was significantly higher in UM patients than in the CAT con-
trol group (p < 0.001) (Figs. 1F, G). Notably, we did not find 
any correlation between the concentrations of EVs isolated 
from UM patients and ocular tumor size (Fig. 1H, I). 

EV protein cargo from plasma AH and VH

To gain an in-depth understanding of the protein cargo in 
EVs isolated from the different analytes, we performed whole 
proteomic analysis by MS. For this purpose, we focused our 
analysis on EVs isolated from three UM patients (UM-5, 
UM-6, and UM-8). Our goal from this analysis was to deter-
mine whether these EVs carried common protein cargo and 
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Fig. 2 - Plasma-derived EV pro-
tein cargo mirrored that of 
EVs isolated from AH and VH 
of UM patients. Venn diagram 
analyses. A) The majority of 
proteins isolated from EVs deri-
ved from the different analytes 
were shared with data publi-
shed in Vesiclepedia database. 
B) EVs isolated from the three 
analytes shared 209 proteins 
(39%). C-E) Analyses of EV pro-
tein cargo in the same analytes 
from different donors. Note 
that these EVs shared 106 pro-
teins (33%, C) in the aqueous 
humor, 181 proteins (44%, D)  
in the vitreous humor and 247 
proteins (73%, E), which is in 
the same range of those sha-
red between EVs from the th-
ree analytes (39%, see B). Data 
were collected from three UM 
patient analytes repeated twice  
each (UM5-1, UM5-2, UM6-1, 
UM6-2, UM8-1, and UM8-2). 
AH = aqueous humor; EV = ex-
tracellular vesicle; VH = vitreous 
humor; UM = uveal melanoma.

also the nature of those proteins. We identified 542 pro-
teins of which 498 (92%) overlap with EV proteins previously 
reported in the Vesiclepedia database (Supplementary Table 
A, List of EV-contained proteins identified by MS screening) 
(Fig. 2A) (37). As a readout for the purity of isolated EVs, 
we detected proteins that are specific to the tissue of ori-
gin (i.e., complement and coagulation factors in EVs from the 
plasma, melanocyte protein PMEL and HTRA1 in the VH, and 
beta- and gamma-crystallin in the AH) (Tab. II). In addition, 
protein cargo detected in isolated EVs included typical EV 
protein signatures such as ESCRT components CD81, CD63, 
CD9, HLA, annexins and syntenin (Supplementary Table A, 
List of EV-contained proteins identified by MS screening). 
Moreover, herein, we report the presence of 44 novel pro-
teins not previously reported in the Vesiclepedia database 
(37); 2 are present in all EVs, 4 are present in EVs from plasma 
and VH, 4 are present in EVs from VH and AH, and the rest are 
unique to EVs from a single analyte (Tab. III). 

Interestingly, 209 (39%) of the identified proteins were 
shared between EVs from the three assays (Fig. 2B). In 
addition, when we analyzed each analyte separately, we 
observed that EVs from the three samples shared 106 (33%) 
proteins in AH, 181 (44%) in VH, and 247 (73%) in plasma  
(Fig. 2C-E).

Proteins by GO analysis in specific biological processes

Of the proteins found in our proteomic analyses data from 
UM patients, 344 proteins were detected from plasma EVs, 334 
in EVs from AH, and 421 in EVs from VH (Fig. 2B). To identify 
the physiological processes to which these proteins were asso-
ciated, clustering was conducted into GO categories using the 
DAVID bioinformatics platform (Fig. 3). Characterization by bio-
logical process highlighted categories related to retina homeo-
stasis, regulation of apoptosis, cell growth, and the activation 
of pathways involved in cancer cell biology (i.e., MAPK/ERK 
cascades). In addition, of the highly expressed proteins, several 
clustered in the categories of cell-cell adhesion and movement 
of cell or subcellular component (Fig. 3A). When clustering the 
proteins based on cellular component, we found they grouped 
into EV categories (i.e., vesicles) (Fig. 3B). Molecular functions 
clustering using KEGG pathway analysis revealed that isolated 
EVs were enriched for proteins related to immune escape from 
cancer, such as those involved in complement and coagulation 
cascades, and proteins involved in cell metabolic activities  
and interaction with extracellular matrix (ECM). Particularly, 
a panel of proteins clustered in the PI3k-Akt signaling path-
way and the proteoglycan group were exclusively present in 
plasma-isolated EVs (Fig. 3C). 
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TABLE II - Protein readout for the purity of isolated EVs

Spectrum Count

Identified Proteins ID AH VH P

Plasma Coagulation factor V FA5 2 0 146

C4b-binding protein alpha chain C4BPA 1 7 127

Coagulation factor IX FA9 1 16 79

von Willebrand factor VWF 0 0 72

Coagulation factor X FA10 2 11 70

Multimerin-1 MMRN1 0 0 33

Platelet glycoprotein Ib alpha chain GP1BA 0 2 22

C4b-binding protein beta chain C4BPB 0 0 14

Serum amyloid P-component SAMP 0 7 14

C-reactive protein CRP 1 1 13

Sushi, von Willebrand factor type A, EGF and pentraxin 
domain-containing protein 1

SVEP1 0 0 2

Serum amyloid A-1 protein SAA1 0 0 1

VH Pigment epithelium-derived factor PEDF 37 111 13

Retinol-binding protein 3 RET3 3 111 0

Melanocyte protein PMEL PMEL 0 27 1

Serine protease HTRA1 HTRA1 0 8 0

Retinaldehyde-binding protein 1 RLBP1 0 2 0

Retinoschisin XLRS1 0 2 0

Interphotoreceptor matrix proteoglycan 1 IMPG1 0 1 0

AH and VH Opticin OPT 12 12 0

AH Beta-crystallin B1 CRBB1 179 2 1

Alpha-crystallin A2 chain CRYA2 146 0 0

Alpha-crystallin B chain CRYAB 139 7 0

Gamma-crystallin S CRYGS 97 1 0

Beta-crystallin A3 CRBA1 76 0 0

Beta-crystallin A4 CRBA4 52 0 0

Gamma-crystallin C CRGC 44 0 0

Gamma-crystallin D CRGD 42 0 0

Retinal dehydrogenase 1 AL1A1 41 0 0

Filensin BFSP1 2 0 0

Phakinin BFSP2 2 0 0

Data are derived from three patients (UM-5, UM-6, and UM-8) and samples were run in duplicates.
AH = aqueous humor; EV = extracellular vesicle; ID = alternative name; P = plasma; VH = vitreous humor.

UM arises from melanocytes of the uveal tract (25,34). 
EVs isolated from the AH and VH may contain proteins reflec-
tive of UM cells. We pooled our data from intraocular-derived 
EVs by focusing on proteins that regulate tumor growth and 
oncogenesis (Tab. IV). This identified a panel of proteins that 
are mainly involved in protecting cells against apoptosis, 
controlling cell growth, promoting angiogenesis, and induc-
ing cell spreading (i.e., clusterin, alpha-enolase, fibulin-1, 
cathepsin, HSP, ECM1, MET, and GAS6). Moreover, vimentin 

(an intermediate filament protein that is overexpressed in 
epithelial tumors such as UMs) was detected in VH-derived 
EVs (Tab. IV) (36,38-40). 

Plasma-isolated EVs were also enriched in proteins 
involved in the regulation of cell proliferation (i.e., SPARC, 
tenascin, plexin) and cell survival (i.e., clusterin), and the 
metastatic process such as metastatic niche organization 
(i.e., ECM1, ECM2, emilin, C-reactive protein [CRP], oncop-
rotein-induced transcript 3 [OIT3], and integrins) (Tab. V, and 
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TABLE III - Newly characterized protein from EVs isolated from plasma, aqueous humor, or vitreous humor

Identified Proteins ID P VH AH

Complement C4-B CO4B Y Y Y

Beta-crystallin B1 CRBB1 Y Y Y

Vitamin K-dependent protein C PROC Y Y N

Immunoglobulin J chain IGJ Y Y N

L-selectin LYAM1 Y Y N

Neuropilin-2 NRP2 Y Y N

Soluble scavenger receptor cysteine-rich domain-containing protein SSC5D SRCRL Y N N

Extracellular matrix protein 2 ECM2 Y N N

Plexin domain-containing protein 1 PLDX1 Y N N

Retinol-binding protein 3 RET3 N Y Y

Opticin OPT N Y Y

Beta-1,4-glucuronyltransferase 1 B4GA1 N Y Y

Wnt inhibitory factor 1 WIF1 N Y Y

Beta-Ala-His dipeptidase CNDP1 N Y N

Receptor-type tyrosine-protein phosphatase zeta PTPRZ N Y N

Macrophage colony-stimulating factor 1 receptor CSF1R N Y N

Serpin E3 SERP3 N Y N

Cadherin-related family member 1 CDHR1 N Y N

Clusterin-like protein 1 CLUL1 N Y N

Retinaldehyde-binding protein 1 RLBP1 N Y N

Retinoschisin XLRS1 N Y N

Adipocyte plasma membrane-associated protein APMAP N Y N

Left-right determination factor 2 LFTY2 N Y N

Neuronal cell adhesion molecule NRCAM N Y N

Interphotoreceptor matrix proteoglycan 1 IMPG1 N Y N

Triggering receptor expressed on myeloid cells 2 TREM2 N Y N

Cathepsin L1 CATL1 N Y N

Endothelial lipase LIPE N Y N

BPI fold-containing family B member 4 BPIB4 N Y N

Semaphorin-3B SEM3B N Y N

Zinc transporter ZIP12 S39AC N Y N

Tsukushin TSK N Y N

Beta-crystallin A3 CRBA1 N N Y

Beta-crystallin A4 CRBA4 N N Y

Gamma-crystallin C CRGC N N Y

Gamma-crystallin D CRGD N N Y

Gamma-crystallin B CRGB N N Y

Beta-crystallin B3 CRBB3 N N Y

Filensin BFSP1 N N Y

Protein S100-B S100B N N Y

Secreted frizzled-related protein 3 SFRP3 N N Y

Phakinin BFSP2 N N Y

DNA polymerase theta DPOLQ N N Y

Protein kinase C-binding protein NELL2 NELL2 N N Y

Data are derived from three patients (UM-5, UM-6, and UM-8) and samples were run in duplicates.
AH = aqueous humor; ID = alternative name; N = absent; P = plasma; VH = vitreous humor; Y = present.
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Fig. 3 - Gene ontology classifi-
cation of EV protein cargo. The 
most enriched categories in 
biological process (A), cellular 
component (B), and molecular 
function (C) are shown. Data 
were collected from three 
UM patient analytes repeated 
twice (UM5-1, UM5-2, UM6-1, 
UM6-2, UM8-1, and UM8-2). 
EV = extracellular vesicle; UM 
= uveal melanoma.
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Supplementary Figure A) (41-44). These data suggest that, 
while AH- and VH-isolated proteins govern in situ UM growth 
and motility, those contained in the plasma-derived EVs are 
more involved in UM cell metastatic organotropism and the 
maintenance of the metastatic niche. 

Discussion

EVs have been reported to regulate many aspects of physi-
ological and pathological processes such as cancer. They carry 
substances that mirror the content of their cell of origin and 
have the capability to exhibit different biological functions 
on recipient cells via trafficking of different factors, that is, 
nucleic acids, proteins, lipids (10,21,44-52). EVs released from 
tumor cells promote cell proliferation, migration, invasion, 

angiogenesis, and metastases (54,57-63). EV cargo could 
be used as circulating biomarkers in liquid biopsy, mainly in 
the context of cancer. In the present study, we determined  
the proteomic profile of EVs isolated from AH, VH, and plasma 
from patients with UM in comparison with cancer-free  
control patients.

TABLE IV - Protein cargo from aqueous humor- or vitreous humor-
derived EVs involved in cell proliferation, survival, and invasion

Spectrum Count

Identified Proteins Alternative  
Name

AH VH

Clusterin CLUS 50 175

Pigment epithelium-derived factor PEDF 37 111

Alpha-enolase ENOA 30 7

Vitronectin VTNC 29 100

Gamma-enolase ENOG 7 2

Cathepsin D CATD 6 64

Fibulin-1 FBLN1 6 4

Myocilin MYOC 6

Heat shock protein HSP 90-alpha HS90A 5 10

Galectin-1 LEG1 3

Heat shock protein HSP 90-beta HS90B 3 4

Extracellular matrix protein 1 ECM1 2 5

Growth arrest-specific protein 6 GAS6 2

CD44 antigen CD44 2 5

C-reactive protein CRP 1 1

Plexin domain-containing protein 2 PXDC2 3

Ras-related protein Rab-1A RAB1A 1

Vimentin VIME 14

Cathepsin B CATB 8

Hepatocyte growth factor receptor MET 6

Cadherin-related family member 1 CDHR1 6

Fibronectin FINC 38

Periostin POSTN 4

Legumain LGMN 3

Cathepsin F CATF 3

AH = aqueous humor; EV = extracellular vesicle; VH = vitreous humor.
Data are derived from three patients (UM-5, UM-6, and UM-8) and samples 
were run in duplicates.

TABLE V - Protein cargo from UM plasma-derived EVs involved in 
cell proliferation and survival, and metastatic niche organization

Identified Proteins Alternative  
Name

Spectrum  
Count

Fibronectin FINC 130

Vitronectin VTNC 109

Clusterin CLUS 57

Integrin alpha-IIb ITA2B 30

Endoplasmin ENPL 28

Integrin beta-3 ITB3 22

SPARC SPRC 22

Nidogen-1 NID1 16

Vinculin VINC 14

Tenascin TENA 13

Pigment epithelium-derived factor PEDF 13

C-reactive protein CRP 13

Heat shock protein HSP 90-alpha HS90A 10

Fibulin-1 FBLN1 9

Heat shock protein HSP 90-beta HS90B 7

Endoplasmic reticulum chaperone BiP BIP 7

CD44 antigen OS = Homo sapiens CD44 6

Heat shock cognate 71 kDa protein HSP7C 4

Extracellular matrix protein 1 ECM1 3

Plexin domain-containing protein 2 PXDC2 2

Extracellular matrix protein 2 ECM2 2

Beta-parvin PARVB 2

Caveolae-associated protein 2 CAVN2 2

Ras-related protein Rab-1A RAB1A 1

Hepatocyte growth factor activator HGFA 1

Oncoprotein-induced transcript 3 protein OIT3 1

EMILIN-1 EMIL1 1

Vascular endothelial growth factor 
receptor 3 

VGFR3 1

Plexin-B1 PLXB1 1

Integrin beta-1 ITB1 1

Alpha-enolase ENOA 1

Protein S100-A8 S10A8 1

Protein S100-A9 S10A9 1

Data are derived from three patients (UM-5, UM-6, and UM-8) and samples 
were run in duplicates.
EV = extracellular vesicle; UM = uveal melanoma. 
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 The size and distribution of EVs detected in the three 
samples were consistent with exosomes (10). In the blood 
samples, a significantly higher concentration of EVs was 
found in UM patients compared to the control group. This 
is in agreement with our recent observations that UM cell 
lines shed more EVs than normal choroidal melanocytes (33). 
Another study suggests that EV has potential roles in cancer 
progression and invasion (11). Interestingly, the mean con-
centration of EVs in VH from UM patients was higher when 
compared to plasma and AH, which seems normal as UM 
takes place in the posterior segment of the eye.

We showed that EVs derived from AH, VH, and plasma 
were positive for CD63 and TSG101 markers.  Besides, the 
expression of CD63 was higher in UM EVs in comparison with 
EVs isolated from samples of control group.  Our data cor-
roborate with a study that demonstrated high levels of CD63 
in exosomes isolated from plasma of melanoma patients (53). 
Also a study showed exosomal marker TSG101 was detected 
in plasma-derived exosome from ovarian cancer patients (21).

We observed that the plasma EV proteomic cargo resem-
bles that of EVs obtained from AH and VH. Although we 
found that only 209 proteins (39%) were shared between EVs 
from the three samples (a value that reached 221 proteins 
[49%] and 279 proteins [57%] when taking into account only 
AH vs. plasma and VH vs. plasma, respectively), this is not 
surprising as the plasma is the common carrier of EVs from 
different tissues. 

Moreover, proteomic mining of isolated EVs from UM 
group identified a set of proteins involved in oncogenesis 
(i.e., regulation of cell proliferation and survival, promotion 
of angiogenesis, and cell invasion) and metastasis (i.e., cell 
spreading and metastatic niche organization) (36,38-43,54). 
For example, SPARC abrogation has been reported to reduce 
cell proliferation in UM (41). Cathepsin, a lysosomal acid 
proteinase, was reported to be involved in different can-
cer types, especially in regulating UM invasion potential 
(36,40). Galectin has been shown to facilitate cell migra-
tion, to promote metastasis, and to be a hallmark for cancer 
aggressiveness (55,56). OIT3 is involved in the development 
and function of the liver, which is the primary site for UM 
metastasis (54). In addition, several integrins were detected 
in the isolated EVs from the UM group. These proteins are 
involved in adhesion to extracellular matrix components and 
specific organotropism of metastasizing cancer cells (43,64). 
The integrins present in the EV preparations demonstrate an 
upregulation of various signal transduction molecules such 
as S100-A. It has been shown that exosome-derived integ-
rins are internalized by target cells and activate SRC phos-
phorylation and proinflammatory S100 gene expression (64). 
Furthermore, EVs from melanoma were found to upregulate 
S100 proteins in recipient target cells, resulting in vascular 
leakiness and promotion of metastasis (31,65).

Other proteins found in the datasets such as heat shock 
proteins and CRP are indicators of worse prognosis in UM 
(38,42). In addition, melanocyte-specific type I transmem-
brane glycoprotein (PMEL) was enriched in EVs from VH and 
less in EVs from plasma. This protein is released by proteo-
lytic ectodomain shedding and may be used as a melanoma-
specific blood marker (5,6,67,68).

Interestingly, the recovered protein cargo contained fac-
tors involved in cell proliferation, cell survival, oncogenesis, 
cell invasion, and metastatic niche organization. Together, 
these data suggest that plasma from UM patients could be 
used as liquid biopsy platform for patient diagnosis and non-
invasive monitoring.

Using clustering analysis based on GO biological process, 
categories consistent with retinal homeostasis and activation 
of intracellular pathways involved in cancer cell biology were 
identified (i.e., MAPK/ERK cascades). Almost all UMs are 
characterized by mutations in one of GNAQ, GNA11, PLCB4, 
or CYSLTR2 genes, and these are upstream activators of the 
MAPK/ERK cascade (66). 

One limitation of this study is the low number of analyzed 
samples for the proteomic characterization (three UM samples). 
However, the consistency of the data between the analyzed 
samples makes the conclusions valuable. Unfortunately, due 
to the lack of material, performing differential protein expres-
sion analysis is not possible at this stage. Studies including more 
samples are in progress to address this weakness.

Liquid biopsy is already distinguishing cancer-free indi-
viduals from non-small cell lung cancer patients and pan-
creatic ductal adenocarcinoma by the quantitative analysis 
of exosomal miR-21 and miR-10b, respectively (67). Intra-EV 
metabolites from prostate cancer patients before and after 
prostatectomy revealed novel biomarkers (68). One must 
remember that not only tumor cells release exosomal RNA 
to affect biological functions but also many normal cells will 
secrete the same exosomal RNA physiologically (69). As men-
tioned before, exosomal integrins could be used to predict 
organ-specific metastasis (64). Therefore, therapy supported 
by liquid biopsy could be driven in a premature way in case of 
early metastasis diagnosis or even somehow by targeting and 
blocking cancer pre-metastatic EV development. Certainly, 
this promising new tool has to be used with caution, and fur-
ther studies are needed.

In conclusion, it has been observed that VH is signifi-
cantly enriched in EVs when compared to AH and plasma in 
UM patients. EV concentrations in plasma and AH from UM 
patients was higher when compared to those in the cataract 
group. Proteomic analysis demonstrated that EVs from the 
different samples shared a panel of proteins, suggesting that 
circulating UM EVs mirrored the in situ shed of EVs (i.e., AH 
and VH). EVs isolated from AH, VH, and plasma from patients 
with UM showed consistent profiles and support the use of 
blood to monitor UM patients as a noninvasive liquid biopsy. 
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