Budget impact analysis of rituximab biosimilar in Italy from the hospital and payer perspectives

Global & Regional Health Technology Assessment Volume 2018: 1–11 © The Author(s) 2018 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/2284240318784289 journals.sagepub.com/home/grh SAGE

Carla Rognoni¹, Arianna Bertolani¹ and Claudio Jommi^{1,2}

Abstract

Introduction: This article aims at investigating the 5-year budget impact of rituximab biosimilars in Italy.

Methods: A budget impact analysis model was developed in accordance with the International Society For Pharmacoeconomics and Outcomes Research recommendations. Drug acquisition and drug administration costs were considered since the risk/benefit profile of biosimilars and the originator was assumed to be overlapping. The perspectives of hospitals and payers were used. Input data were retrieved from the literature and validated/integrated by an expert panel of seven clinicians from various Italian regions. A dynamic incidence-based approach was used.

Results: From the hospital perspective, adopting a rituximab biosimilar would produce savings of \notin 79.2 and \notin 153.6 million over 3 and 5 years, respectively. The results are very similar if the payer perspective is considered, with a cumulated savings of about \notin 153.4 million in 5 years. Lymphoma and chronic lymphocytic leukaemia would account for the most significant savings.

Discussion: Despite its limitations, this study provides the first Italian evaluation of the financial impact of rituximab biosimilars and also incorporates the effects of biosimilars on the pricing strategies of the originator (dynamic impact). This dynamic effect is more relevant than the impact of the treatment shift from the originator to biosimilars. Our hope is that these savings will be used to cover new cost-effective drugs and not just for cost-cutting policies.

Keywords

Rituximab, biosimilar, budget impact analysis, economic evaluation

Date received: 23 March 2018; accepted: 31 May 2018

Introduction

Biosimilars may represent an important opportunity to enhance allocative efficiency in the market for biological products. Savings from price-competition could be invested in new cost-effective drugs and/or to broaden patient access to existing therapies. The availability of biosimilars is expected to be associated with allocative efficiency and decreased spending on medications, being one of the driving forces in budgetary savings.¹

At present, 44 biosimilar products have been approved by the European Medicines Agency (EMA) for 14 molecules,² and 16 are under evaluation.³ In Italy, 32 biosimilars have been approved so far and, in the first 9 months of 2017, they had reached an 18% market share over total volumes (number of counting units) for the relevant markets (molecules with at least one available biosimilar). The biosimilar market share shows huge variations across regions in Italy, ranging from 62.6% in Piedmont to 6.5% in Puglia.⁴ Regional variations can be

Corresponding author:

Carla Rognoni, Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi University, Via Roentgen I, Milan 20136, Italy. Email: carla.rognoni@unibocconi.it

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

¹Centre for Research on Health and Social Care Management (CERGAS), SDA Bocconi University, Milan, Italy ²Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy

ascribed to divergent procurement policies and actions on prescribing behaviour.⁵ However, these differences could diminish in the future. A new regulation (Law 232/2016) only allows prescribing physicians to switch from the originator to the biosimilar (or from one biosimilar to another biosimilar). According to the same law, procurement should rely on a framework agreement if there are more than three available products for an off-patent biological molecule (originator and biosimilars).

Rituximab was the first monoclonal antibody approved for cancer in 1997, and is also approved for rheumatoid arthritis. It can be administered by both the intravenous (IV) and the more recently approved subcutaneous (SC) route as a monotherapy or in combination with chemotherapy regimens.

Rituximab is a chimeric monoclonal antibody targeting the CD20 antigen, which is present on the surface of B-lymphocytes. In 2016, rituximab was the third-largest selling hospital drug in Italy (\in 156 million), according to the Italian Medicines Agency (Agenzia Italiana del Farmaco – AIFA).⁶

Since the patent for rituximab IV expired, EMA has approved two biosimilars so far: Truxima and Rixathon on 17 February 2017 and 23 June 2017, respectively.² The rituximab biosimilars were approved for the treatment of all indications approved for the reference biological (non-Hodgkin's lymphoma, chronic lymphocytic leukaemia, rheumatoid arthritis, granulomatosis with polyangiitis and microscopic polyangiitis). AIFA subsequently also approved the use of biosimilar rituximab for the off-label indications previously identified for the originator (Determina AIFA 2107/2017) and included in the 648 List (i.e. the off-label use list covered by the Italian National Health Service – INHS).

Our study aims at investigating the financial impact of the introduction of rituximab biosimilars in clinical practice in Italy through a Budget Impact Analysis (BIA). In the present analysis, BIA of rituximab biosimilars is evaluated, including both approved and off-label indications, with a split per indication and adopting both the hospital and third-party payer point of view.

To the best of our knowledge, the budget impact of rituximab biosimilars has been investigated by only one study so far.⁷ Although this article provided a general overview of the budget impact in European countries from the third-party payer perspective, it lacked information regarding the number of patients per approved indication and did not distinguish between specific off-label uses.

Methods

A BIA model was developed in accordance with the ISPOR Principles of Good Practice for BIA.⁸

The model considers for both the rituximab originator and biosimilar as follows:

- The approved clinical indications: follicular lymphoma (FL) III-IV stage (induction, associated with chemotherapy scheme CVP - cyclophosphamide, vincristine, prednisolone), recurrent/ refractory FL III-IV stage (induction, associated with chemotherapy scheme CHOP - cyclophosphamide, hydroxydaunorubicin, oncovin, prednisolone), untreated or recurrent/refractory FL (maintenance therapy), recurrent/refractory FL III-IV stage (induction, mono-therapy), non-Hodgkin lymphoma (NHL) CD20+ large B cells in combination with chemotherapy CHOP, untreated recurrent/refractory chronic lymphocytic or with leukaemia (CLL) in combination chemotherapy, severe rheumatoid arthritis. granulomatosis with polyangiitis and microscopic polyangiitis.
- The off-label use for the following indications: non-Hodgkin lymphoma CD20+ large B cells in combination with polychemotherapy for first-line or salvage treatment, CLL B cells in combination with polychemotherapy for first-line or salvage post-transplant lymphoproliferative treatment, disorder, acute or chronic graft versus host disease (GVHD), FL in patients not eligible for polychemotherapy (mono-chemotherapy), lymphocytepredominant Hodgkin lymphoma, warm antibody autoimmune haemolytic anaemia, relapsing or refractory thrombotic thrombocytopenic purpura resistant to plasma exchange, immune thrombocytopenic purpura resistant to standard treatments, resistant acquired haemophilia.

The model was developed in MS Excel according to the following process:

- Collection and analysis of epidemiological data (prevalence and incidence) relating to patients in Italy for whom treatment with rituximab is indicated (including off-label use);
- Definition of the current scenario, that is, the number of prevalent and incident patients treated with the rituximab originator;
- Definition of future scenarios (i.e. the penetration rate of the biosimilar) for the different indications;
- Cost estimates for current and future scenarios.

Since biosimilars are approved through a comparability exercise, we assumed an overlapping risk/benefit profile between the originator and the biosimilars, the only difference being the actual unit price of the drug and the administration route (IV vs SC).

Two perspectives were used: (1) the hospital perspective, that is, the acquisition cost of the drug and the administration cost and (2) the payer perspective, that is, rituximab is administered either in 'day hospital' or in an outpatient setting, and hospitals are paid in principle on a fee-perepisode basis that should cover the full treatment cost but, in reality, hospitals are paid the drug acquisition cost and a 'discounted' fee⁹ (Regional Laws).

Input data were validated and integrated by an expert panel of seven clinicians. Considering the large variability in biosimilar penetration rates across Italian regions, clinicians from different regions were invited to join the panel. A Delphi-driven approach was applied in the early stage of the data collection, since experts were asked to answer a questionnaire independently.¹⁰ Afterwards, data gathered were discussed with the experts through a group meeting (11 October 2017). Hence, we have adopted a mixed method, integrating a Delphi approach with an experts' panel approach. The panel was asked to: (1) validate the epidemiological data for each indication and the relevant proportion of patients treated with rituximab, (2) validate the therapeutic schemes per indication, (3) estimate the yearly and 5-year market share for the originator and the biosimilars per indication and (4) estimate time dedicated by healthcare professionals to patient care when the drug is being administered.

Market shares were applied to new, incident cohorts (naïve treatment) for almost all the indications, since the treatment lasts less than 1 year. The prevalent population was used only for maintenance therapy for FL (patients are treated every 2-3 months until progression, for a maximum of 2 years). We assumed that half of the prevalent patients are in the first year of treatment and half are in the second year of treatment. The expert panel reached a consensus of 12 cycles of therapy over 2 years for patients with untreated FL and 8 cycles of therapy distributed over 2 years for patients with relapsed or refractory FL. Survival curves for the different indications were consulted to obtain the percentages of patients still alive and treated at different times. As the focus was on the expected budget at each point in time, the financial streams were presented as undiscounted costs.8

Clinicians expressed the opinion that biosimilars will be used only for drug-naïve patients (i.e. there will not be patients switching from the originator to the biosimilars) and that biosimilars will mostly substitute the IV rituximab originator. This assumption minimizes the impact of biosimilar market penetration on drug administration costs.

The unit cost of the rituximab originator was calculated as the ex-factory price net of the compulsory 5%+5%discount and an additional discount, according to the agreement negotiated by AIFA and the company holding the marketing authorization in July 2017.¹¹ The unit cost of biosimilars was calculated as the ex-factory price of Rixathon net of the 5%+5% discount. For future scenarios, we have adopted a dynamic approach looking at further discounts for the rituximab originator due to price-competition (5%, 10% and 15% for year 1, year 2 and years 3–5, respectively). Biosimilars are expected to be discounted to 30%, 35% and 45% on average for year 1, year 2 and years 3–5, respectively. These discounts were estimated on the basis of the most recent experience for infliximab (*data on file*).

As mentioned above, rituximab is administered in day hospital or in an outpatient setting. For both settings fees for drug administration are determined by the regional governments (payers). However, regions usually pay to the hospital the acquisition costs of the drugs and a 'discounted' fee. In the hospital perspective case, drug administration costs were estimated based on the consensus reached by the expert panel on time dedicated by nurses and physicians, that is, 50 and 20 minutes for an IV infusion, respectively, and 25 minutes spent by nurses on SC administration. The unit cost per minute for healthcare personnel was estimated using the gross annual salaries¹² of €32,518 for nurse and €73,050 for physician. These values correspond to a cost per hour of €19.64 and €44.11, respectively, considering 46 working weeks per year (36 working hours per week) and translate into $\in 0.33$ and $\in 0.74$ per minute, for nurse and physician, respectively.

Table 1 summarizes all unit costs used in the model.

The BIA model has been designed to allow for additional analyses. For example, a scenario analysis has been performed considering 7% savings if vial sharing is applied.¹³

Results

Table 2 illustrates the target population per indication. According to the expert panel, use of rituximab in patients with granulomatosis, polyangiitis and microscopic polyangiitis is very rare in Italy, and these three indications were excluded from the model.

Current (year 0) and future scenarios (years 1–5) of market shares are presented in Table 3. As mentioned before, clinicians agreed that biosimilars will erode market share of the IV rituximab originator without large variations in the trend for the SC formulation and that regional policies (some more hostile to SC administration, others more favourable) will not change for the considered time horizon.

From the hospital perspective, rituximab would cost $\notin 123.8$ million under the current scenario. Savings due to biosimilars would reach $\notin 16.9$, $\notin 26.0$, $\notin 36.2$, $\notin 36.8$ and $\notin 37.6$ million in the 1st, 2nd, 3rd, 4th and 5th years, respectively, with cumulated savings of $\notin 153.6$ million in the next 5 years (Figure 1). Results are very similar using the payer perspective, with a cumulated savings of about $\notin 153.4$ million over the next 5 years. Detailed results are presented in Table 4.

Table I. BIA model inpu	t data.
-------------------------	---------

	Data	References
Epidemiological data	See Table 2	See Table 2
Market share data	See Table 3	See Table 3
Rituximab originator ex-factory price	Two vials 100 mg/10 mL (IV): €455.96 One vial 500 mg/50 mL (IV): €1139.7 One vial 1400 mg/11.7 mL (SC): €1450.29	Determina AIFA 1348/2017 net of 5%+5% discount and 9% discount ^a
Rituximab biosimilar ex-factory price	One vial 500 mg/50 mL (IV): €1110.17	Determina AIFA 1286/2017
Personnel unit cost per minute	Nurse: €0.33 Physician: €0.74	«Conto Annuale»–Dipartimento della Ragioneria Generale dello Stato ^ь
Personnel time for drugs administration	Nurse (IV): 50 min Physician (IV): 20 min Nurse (SC): 25 min	Expert panel
Full tariffs (weighted average)	IV: €170.55 SC: €153.24	Regional laws + Assobiomedica ^c
Discounted tariffs (weighted average)	IV: €19.84 SC: €18.11	

BIA: budget impact analysis.

^ahttp://www.aobrotzu.it/documenti/9_383_20170727121539.pdf.

^bhttp://www.contoannuale.tesoro.it/cognos1022/cgi-bin/cognosisapi.dll?b_action=xts.run&CAMUsername=cog_usr&CAMPassword=cog_usr&h_ CAM_action=logonAs&CAMNamespace=ADS&m=portal/cc.xts&m_tab=w&b_action=cognosViewer&ui.action=run&ui.object=%2fcontent% 2fpackage%5b%40name%3d%27Sico%20Sito%27%5d%2freport%5b%40name%3d%27Home%20Page%27%5d&ui.name=Home%20Page&run. outputFormat=HTML&run.prompt=true&cv.header=false&cv.toolbar=false.

^chttps://www.assobiomedica.it/it/analisi-documenti/tariffari-ospedalieri/index.html; https://www.assobiomedica.it/it/analisi-documenti/tariffari-specialistica/index.html.

Table 2. Number of patients considered for the different clinical indications each	ı year
--	--------

Indication	Treatment type	Incidence/prevalence		No. of patients considered	Reference
Approved indications					
Untreated follicular	Induction,	Total FL patients (incidence)	1213	134	14-16
lymphoma III–IV stage	associated to	III–IV stage	75%		
	chemotherapy CVP	Untreated	15%		
		Induction + chemotherapy	98%		
		Treated with rituximab	100%		
Recurrent/refractory	Induction,	Total FL patients (incidence)	1213	164	14–16
follicular lymphoma III–IV	associated to	III–IV stage	75%		
stage	chemotherapy	Recurrent/refract	20%		
	CHOP	Induction + chemotherapy	90%		
		Treated with rituximab	100%		
Untreated follicular	Maintenance	Total FL patients (prevalence)	9525	2858	14,15
lymphoma		Untreated	30%		
		Maintenance	100%		
		Treated with rituximab	100%		
Recurrent/refractory	Maintenance	Total FL patients (prevalence)	9525	2858	14,15
follicular lymphoma		Recurrent/refractory	30%		
		Maintenance	100%		
		Treated with rituximab	100%		
Recurrent/refractory	Induction,	Total FL patients (incidence)	1213	18	14-16
follicular lymphoma III–IV	monotherapy	III-IV stage	75%		
stage		Recurrent/refractory	20%		
		Induction	10%		
		Treated with rituximab	100%		
Non-Hodgkin lymphoma	In combination	Total NHL B-cell CD20+ patients (incidence)	2912	1791	15,17
CD20+, large B cells	with chemotherapy	In combination with chemotherapy	62%		
	CHOP	Treated with rituximab	100%		

Table 2. (Continued)

Indication	Treatment type	Incidence/prevalence		No. of patients considered	Reference
Untreated chronic lymphocytic leukaemia	In combination with chemotherapy	Total CLL patients (incidence) Untreated	2750 55%	1422	4, 8
		Treated with rituximab	94%		
Recurrent/refractory	In combination	Total CLL patients (incidence)	2750	578	14,18
chronic lymphocytic	with chemotherapy	Recurrent/refractory	25%		
leukaemia		Treated with rituximab	84%		
Severe rheumatoid arthritis	-	Total severe rheumatoid arthritis patients (prevalence)	5000	1100	19
		Treated with rituximab	22%		
Off-label indications					
Non-Hodgkin lymphoma	In combination with	Total NHL B-cell CD20+ patients (incidence)	2912	371	15,17
CD20+, large B cells	polychemotherapy	In combination with chemotherapy	13%		- ,
6	or as first-line or	First-line or salvage	98%		
	salvage	Treated with rituximab	100%		
Chronic lymphocytic	In combination	Total CLL patients (incidence)	2750	470	14 20
leukaemia B cells	with	P collo	2750	011	17,20
leakaerina D cens	polychemotherapy	Einet line on solvere	20%		
	or as first-line or	Associated with showethereasy first line on	20%		
	salvage	associated with chemotherapy first-line or salvage	90%		
		Treated with rituximab	100%		
Post-transplant lymphoproliferative	-	Total post-transplant lymphoproliferative disorder patients (incidence)	23	23	21–23
disorder		Treated with rituximab	100%		
Acute or chronic graft- versus-host disease	_	Total acute or chronic GVHD patients (steroid resistant; incidence)	1700	340	24,25
(GVHD) (steroid resistant)	Treated with rituximab	20%		
Follicular lymphoma-	Induction +	Total FL patients (incidence)	1213	61	14
monochemotherapy	treatment	Not eligible to polychemotherapy	5%		
(patients not eligible for polychemotherapy)		Treated with rituximab	100%		
Lymphocyte-	-	Total Hodgkin lymphoma patients (incidence)	1820	91	26,27
predominant Hodgkin lymphoma		Lymphocyte predominant	5%		
		Treated with rituximab	100%		
Warm antibody autoimmune haemolytic	_	Total warm antibody autoimmune haemolytic anaemia patients (incidence)	480	336	28
anaemia		Treated with rituximab	70%		
Relapsing or	_	Total relapsing or refractory thrombotic	30	30	29
refractory thrombotic		thrombocytopenic purpura resistant to			
thrombocytopenic		plasma exchange patients (incidence)			
purpura resistant to plasma exchange		Treated with rituximab	100%		
Immune	-	Total immune thrombocytopenic purpura	971	486	29
thrombocytopenic		resistant to standard treatments patients			
purpura resistant to		(incidence)			
standard treatments		Treated with rituximab	50%		
Resistant acquired haemophilia	-	Total resistant acquired haemophilia patients (incidence)	30	24	29
		Treated with rituximab	80%		

Figure 2 shows that the most important savings derive from the use of rituximab biosimilars for lymphoma

(including follicular and non-Hodgkin lymphoma CD20+, large B cells) and chronic lymphocytic leukaemia.

Indication	Treatment type	Therapies	Year 0 (%)	Year I (%)	Year 2 (%)	Year 3 (%)	Year 4 (%)	Year 5 (%)
Approved indications								
Untreated follicular	Induction, associated	Rituximab originator IV	43.3	26.7	16.7	10.0	8.3	6.7
lymphoma III–IV stage	to chemotherapy	Rituximab biosimilar IV	0.0	13.3	20.0	23.3	25.0	26.7
	CVP	Rituximab SC	56.7	60.0	63.3	66.7	66.7	66.7
		Total	100.0	100.0	100.0	100.0	100.0	100.0
Recurrent/refractory	Induction, associated	Rituximab originator IV	43.3	26.7	16.7	10.0	8.3	6.7
follicular lymphoma	with chemotherapy	Rituximab biosimilar IV	0.0	13.3	20.0	23.3	25.0	26.7
III–IV stage	CHOP	Rituximab SC	56.7	60.0	63.3	66.7	66.7	66.7
		Total	100.0	100.0	100.0	100.0	100.0	100.0
Untreated follicular	Maintenance	Rituximab originator IV	43.3	26.7	16.7	10.0	8.3	6.7
lymphoma		Rituximab biosimilar IV	0.0	13.3	20.0	23.3	25.0	26.7
		Rituximab SC	56.7	60.0	63.3	66.7	66.7	66.7
		Total	100.0	100.0	100.0	100.0	100.0	100.0
Recurrent/refractory	Maintenance	Rituximab originator IV	43.3	26.7	16.7	10.0	8.3	6.7
follicular lymphoma		Rituximab biosimilar IV	0.0	13.3	20.0	23.3	25.0	26.7
		Rituximab SC	56.7	60.0	63.3	66.7	66.7	66.7
		Total	100.0	100.0	100.0	100.0	100.0	100.0
Recurrent/refractory	Induction,	Rituximab originator IV	100.0	66.7	45.5	30.0	25.0	20.0
follicular lymphoma	monotherapy	Rituximab biosimilar IV	0.0	33.3	54.5	70.0	75.0	80.0
III–IV stage		Total	100.0	100.0	100.0	100.0	100.0	100.0
Non-Hodgkin	In combination	Rituximab originator IV	63.3	50.0	36.7	30.0	28.3	26.7
lymphoma CD20+,	with chemotherapy	Rituximab biosimilar IV	0.0	10.0	20.0	23.3	25.0	26.7
large B cells	CHOP	Rituximab SC	36.7	40.0	43.3	46.7	46.7	46.7
		Total	100.0	100.0	100.0	100.0	100.0	100.0
Untreated chronic	In combination with	Rituximab originator IV	100.0	40.0	23.3	10.0	10.0	10.0
lymphocytic	chemotherapy	Rituximab biosimilar IV	0.0	60.0	76.7	90.0	90.0	90.0
leukaemia		Total	100.0	100.0	100.0	100.0	100.0	100.0
Recurrent/refractory	In combination with	Rituximab originator IV	100.0	40.0	23.3	10.0	10.0	10.0
chronic lymphocytic	chemotherapy	Rituximab biosimilar IV	0.0	60.0	76.7	90.0	90.0	90.0
leukaemia		Total	100.0	100.0	100.0	100.0	100.0	100.0
Severe rheumatoid	-	Rituximab originator IV	100.0	70.0	50.0	10.0	10.0	0.0
arthritis		Rituximab biosimilar IV	0.0	30.0	50.0	90.0	90.0	100.0
		Total	100.0	100.0	100.0	100.0	100.0	100.0
Off-label indications								
Non-Hodgkin	In combination with	Rituximab originator IV	100.0	25.0	7.5	5.0	2.5	2.5
lymphoma CD20+,	polychemotherapy	Rituximab biosimilar IV	0	75.0	92.5	95.0	97.5	97.5
large B cells	first-line or salvage	Total	100.0	100.0	100.0	100.0	100.0	100.0
Chronic lymphocytic	In combination with	Rituximab originator IV	100.0	40.0	22.5	15.0	12.5	12.5
leukaemia B cells	polychemotherapy	Rituximab biosimilar IV	0	60.0	77.5	85.0	87.5	87.5
	first-line or salvage	Total	100.0	100.0	100.0	100.0	100.0	100.0
Post-transplant	-	Rituximab originator IV	100.0	42.5	25.0	16.3	12.5	12.5
lymphoproliferative		Rituximab biosimilar IV	0	57.5	75.0	83.8	87.5	87.5
disorder		Total	100.0	100.0	100.0	100.0	100.0	100.0
Acute or chronic	-	Rituximab originator IV	100.0	42.5	22.5	15.0	12.5	12.5
graft-versus-host		Rituximab biosimilar IV	0	57.5	77.5	85.0	87.5	87.5
disease (GVHD; steroid resistant)		Total	100.0	100.0	100.0	100.0	100.0	100.0
Follicular lymphoma	Induction +	Rituximab originator IV	100.0	25.0	7.5	5.0	2.5	2.5
monochem. (patients	treatment	Rituximab biosimilar IV	0	75.0	92.5	95.0	97.5	97.5
not eligible for polychem.)		Total	100.0	100.0	100.0	100.0	100.0	100.0
Lymphocyte-	-	Rituximab originator IV	100.0	15.0	7.5	5.0	2.5	2.5
predominant Hodgkin		Rituximab biosimilar IV	0	85.0	92.5	95.0	97.5	97.5
lymphoma		Total	100.0	100.0	100.0	100.0	100.0	100.0

Table 3. Market shares for current (year 0) and future scenarios (years I-5) for the different clinical indications.

(Continued)

Table 3. (Continued)

Indication	Treatment type	Therapies	Year 0 (%)	Year I (%)	Year 2 (%)	Year 3 (%)	Year 4 (%)	Year 5 (%)
Warm antibody autoimmune haemolytic anaemia	-	Rituximab originator IV Rituximab biosimilar IV Total	100.0 0 100.0	15.0 85.0 100.0	7.5 92.5 100.0	5.0 95.0 100.0	2.5 97.5 100.0	2.5 97.5 100.0
Relapsing or refractory thrombotic thrombocytopenic purpura resistant to plasma exchange	-	Rituximab originator IV Rituximab biosimilar IV Total	100.0 0 100.0	15.0 85.0 100.0	7.5 92.5 100.0	5.0 95.0 100.0	2.5 97.5 100.0	2.5 97.5 100.0
Immune thrombocytopenic purpura resistant to standard treatments	-	Rituximab originator IV Rituximab biosimilar IV Total	100.0 0 100.0	15.0 85.0 100.0	7.5 92.5 100.0	5.0 95.0 100.0	2.5 97.5 100.0	2.5 97.5 100.0
Resistant acquired haemophilia	-	Rituximab originator IV Rituximab biosimilar IV Total	100.0 0 100.0	16.7 83.3 100.0	10.0 90.0 100.0	6.7 93.3 100.0	3.3 96.7 100.0	3.3 96.7 100.0

Figure 1. Savings in the future scenario compared to current scenario from the hospital perspective.

The scenario analysis assuming a 7% discount for vial sharing showed a total savings of \notin 142.7 million for the period considered.

Discussion

This study, to the best of our knowledge, is the first BIA of rituximab biosimilars for all indications in Italy (both approved and off-label covered by the INHS). The BIA model was developed and populated with data retrieved from the literature and integrated and validated through expert opinions.

The model estimated a total savings in a 5-year time horizon of about \notin 153.6 million if the perspective of

hospital is used and very similar savings could be reached using the payer perspective.

Since we have adopted a dynamic approach, we were able to estimate savings derived from price competition on originators (67% of total savings) together with savings caused by the biosimilars uptake (33% of total savings). Hence, dynamic effects (i.e. price-competition induced by the biosimilar) seem to be more relevant than reallocation of market shares from the originator to biosimilars. However, since the penetration rate of biosimilars has been derived from expert opinions, it is worth to highlight that the reported values might be not fully representative of the real market shares and the consequent potential total savings.

Table 4. BIA acco	rding to the different (clinical indic	ations and F	oerspectives	considered.								
Indication	Therapies	Hospital per	rspective					Payer perspe	ective				
		Year0 (€)	Year I (€)	Year 2 (€)	Year 3 (€)	Year4 (€)	Year 5 (€)	Year 0 (€)	Year I (€)	Year 2 (€)	Year 3 (€)	Year4 (€)	Year5 (€)
Approved indications													
Untreated follicular	Rituximab originator IV	537 846	314 749	186 572	105 856	88 213	70 57	534 134	312 465	185 145	105 000	87 500	70 000
lymphoma III–IV	Rituximab biosimilar IV	0	102 513	143 066	141 937	152 075	162 214	0	87 391	122 222	121 907	130 615	139 322
stage	Rituximab SC	741 129	784 725	828 320	871916	871916	871916	744 485	788 278	832 072	875 865	875 865	875 865
	Total	I 278 974	1 201 986	I 157 959	1119 709	1112 205	I 104 701	1 278 619	I 188 134	I 139 438	1 102 771	1 093 979	I 085 187
Recurrent/refractory	Rituximab originator IV	657 701	384 889	228 149	129 445	107 871	86 297	653 163	382 096	226 403	128 398	106 998	85 599
follicular lymphoma	Rituximab biosimilar IV	0	126 021	175 943	174 728	187 209	199 689	0	124 625	173 849	172 284	184 590	196 897
III–IV stage	Rituximab SC	906 071	959 370	1 012 668	I 065 966	I 065 966	I 065 966	910 171	963 711	1 017 250	1 070 790	1 070 790	1 070 790
	Total	I 563 773	I 470 279	1 416 760	1370140	1361046	1 351 953	I 563 334	470 43	1417502	1 371 472	I 362 379	I 353 285
Untreated follicular	Rituximab originator IV	12 085 801	8 9 4 4 83	5 240 530	3 039 407	2 147 407	1 750 963	12 002 404	8 849 797	5 200 436	3014816	2 130 033	1 736 796
lymphoma	Rituximab biosimilar IV	0	I 350 848	2 784 062	3 019 657	3 344 557	3 573 898	0	I 335 879	2 750 917	2 977 424	3 297 780	3 523 914
	Rituximab SC	14 305 788	14 800 012	15 641 529	16 483 046	16 830 339	16 830 339	14 385 139	14 881 667	15 727 851	16 574 036	16 923 693	16 923 693
	Total	26 391 589	25 065 343	23 666 121	22 542 110	22 322 303	22 155 200	26 387 543	25 067 343	23 679 204	22 566 276	22 351 506	22 184 403
Recurrent/ refractory	Rituximab originator IV	8 057 201	5 820 200	3 423 813	I 982 222	I 420 592	I 156 296	8 001 603	5 777 966	3 397 618	1 966 184	I 409 099	146 94
follicular lymphoma	Rituximab biosimilar IV	0	964 891	I 885 977	2 025 846	2 236 075	2 388 970	0	954 200	l 863 524	I 997 512	2 204 802	2 355 557
	Rituximab SC	9 582 608	9 937 915	10 501 598	11 065 280	II 273 656	II 273 656	9 629 799	9 986 464	10 552 922	11 119 381	11 329 176	11 329 176

Rituximab originator IV	14 157 304	10 628 651	7 392 354	5 719 389	5 401 645	5 083 901	14 059 613	10 551 526
Rituximab biosimilar IV	0	1 392 021	2 591 281	2 573 385	2 757 198	2 941 011	0	1 376 596
Rituximab SC	8 328 743	9 085 901	9 843 060	10 600 218	10 600 218	10 600 218	8 370 808	9 131 791
Total	22 486 047	21 106 573	19 826 695	18 892 992	18 759 061	18 625 131	22 430 421	21 059 913
Rituximab originator IV	18 093 984	6 880 841	3 805 719	I 54I 834	I 54I 834	I 54I 834	18 001 354	6 843 789
Rituximab biosimilar IV	0	6 739 983	8 011 083	7 992 996	7 992 996	7 992 996	0	6 684 405
Total	18 093 984	13 620 825	11 816 802	9 534 830	9 534 830	9 534 830	18 001 354	13 528 195
Rituximab originator IV	7 175 756	2 728 823	I 509 284	611466	611466	611466	7 138 975	2714111
Rituximab biosimilar IV	0	2 672 988	3 177 096	3 169 940	3 169 940	3 169 940	0	2 650 919
Total	7 175 756	5 401 811	4 686 380	3 781 406	3 781 406	3 781 406	7 138 975	5 365 030
Rituximab originator IV	10 166 057	6 765 212	4 581 561	866 165	866 165	0	10 1 16 667	6 730 639
Rituximab biosimilar IV	0	I 892 574	2 933 865	4 487 430	4 487 430	4 986 033	0	I 877 756

Recurrent/refractory

Untreated chronic

lymphocytic

leukaemia

chronic lymphocytic

leukaemia

Severe rheumatoid

arthritis

lymphoma CD20 +,

large B cells

Non-Hodgkin

Total

118 394 0

14 831 674

14 943 076

14 930 324

15 073 349

15 811 388

16 723 006

17 639 809

Total

48 536 37 430 85 967

75 058

Rituximab originator IV 118 394

Recurrent/ refractory

follicular lymphoma

III-IV stage

Rituximab biosimilar IV

69 053

71 181

20 031 46 077 66 108

7 909 628

7 909 628

9 442 200

9 442 200

9 442 200

11 724 172

I 532 571

I 532 571

68 236

(Continued)

1717494

I 918 247

0

I 74I 856 1819062

I 74I 856 1819062

0

Rituximab biosimilar IV

lymphoma CD20 +,

large B cells

Non-Hodgkin

Total

3 620 995

2 161 309

3 596 008

1 794 075

76 581

76 581

153 162

243 062

854 604

3 596 008

77 205

77 205

154411

244 936

860 85 |

Rituximab originator IV 3 620 995

4 442 978

2 909 170

5 304 204

7 466 035

10 116 667

5 353 595

5 353 595

8 657 786

10 166 057

Total

Off-label indications

3 744 625

C

861 226

861 226

3 136 837

607 788

607 788

607 788

I 500 702 3 148 898 4 649 599 4 556 865

Indication	Therapies	Hospital per	spective					Payer perspe	ective				
		Year0 (€)	Year I (€)	Year 2 (€)	Year 3 (€)	Year 4 (€)	Year 5 (€)	Year0 (€)	Year I (€)	Year 2 (€)	Year 3 (€)	Year4 (€)	Year 5 (€)
Chronic lymphocytic leukaemia B cells	Rituximab originator IV Rituximab biosimilar IV Total	6 073 727 0 6 073 727	2 309 736 2 262 440 4 572 176	23 865 2 718 34 3 950 206	776 335 2 533 974 3 3 10 309	646 946 2 608 503 3 255 449	646 946 2 608 503 3 255 449	6 042 656 0 6 042 656	2 297 308 2 243 797 4 541 105	224 874 2 694 262 3 919 135	771 674 2 507 564 3 279 239	643 062 2 581 316 3 224 378	643 062 2 581 316 3 224 378
Post-transplant lymphoproliferative	Rituximab originator IV Rituximab biosimilar IV	149 659 0	60 486 53 588	33 745 65 058	20 741 61 840	15 955 64 609	15 955 64 609	148 627 0	60 047 52 994	33 487 64 284	20 574 60 975	15 826 63 705	15 826 63 705
disorder Acute or chronic	Total Biruvimah originator IV	49 659 2 049 216	114 074 828 203	98 803 415 847	82 581 262 156	80 564 218 463	80 564 218 463	148 627 2 035 076	113 041 822-193	97 770 412 665	81 548 260 035	79 531 216 695	79 531 216 695
graft-versus-host disease (steroid resistant)	Rituximab biosimilar IV Total	2 049 216	733 759 1 561 961	920 504 1 336 351	859 382 121 538	884 658 1 103 121	884 658 1 103 121	2 035 076	725 628 1 547 821	909 545 1 322 211	847 363 1 107 398	872 285 1 088 981	872 285 1 088 981
Follicular lymphoma – monochem	Rituximab originator IV	781 621 0	185 821 365 050	52 871 419 058	33 331 366 353	16 665 375 993	16 665 375 993	776 227 0	184 473 361 007	52 467 414 069	33 061 361 229	16 531 370 735	16 531 370 735
(patients not eligible to polychem.)	Total	781 621	550 874	471 929	399 683	392 659	392 659	776 227	545 480	466 536	394 290	387 265	387 265
Lymphocyte- predominant	Rituximab originator IV Rituximab biosimilar IV	592 130 0	84 463 313 425	40 054 317 465	25 250 277 537	12 625 284 840	12 625 284 840	588 044 0	83 850 309 952	39 747 313 685	25 046 273 655	12 523 280 857	12 523 280 857
Hodgkin lymphoma	Total	592 130	397 888	357 518	302 787	297 466	297 466	588 044	393 803	353 432	298 701	293 380	293 380
VVarm antibody autoimmune haemolytic anaemia	Rituximab originator IV Rituximab biosimilar IV Totol	2 186 327 0 7 186 377	311 865 1 157 262 1 469 177	47 890 172 77 320 067	93 232 024 75 117 983	46 616 1 051 718 1 098 334	46 616 1 051 718 1 098 334	2 7 240 0 2 7 240	309 602 144 438 454 040	46 759 158 222 304 981	92 478 010 419 107 897	46 239 037 009 083 248	46 239 037 009 083 248
Relapsing or refractory	Rituximab originator IV	195 208	27 845 103 377	13 204	8 324 91 496	4 162 92 903	4 162 93 903	2 17 1 2 10 193 861 0	27 643	13 103 13 413	8 257 90 216	4 128 47 590	4 128 97 590
thrombotic thrombocytopenic purpura resistant to plasma exchange	Total	195 208	131 172	117 863	99 820	98 066	990 86	193 861	129 825	116516	98 473	617 96	96 719
Immune thrombocytopenic purpura resistant to standard treatments	Rituximab originator IV Rituximab biosimilar IV Total	3 59 2 0 3 59 2	450 626 672 175 2 122 801	213 693 1 693 726 1 907 419	134 715 1 480 705 1 615 419	67 357 1 519 671 1 587 028	67 357 519 67 587 028	3 37 3 3 0 3 37 3 3	447 356 653 645 2 101 002	212 058 1 673 562 1 885 619	33 625 459 995 593 620	66 812 498 416 565 229	66 812 1 498 416 1 565 229
Resistant acquired haemophilia	Rituximab originator IV Rituximab biosimilar IV Total	156 166 0 156 166	24 751 81 041 105 792	14 085 81 464 95 549	8 879 71 912 80 792	4 440 74 481 78 920	4 440 74 481 78 920	155 089 0 155 089	24 572 80 143 104 714	13 977 80 494 94 471	8 807 70 907 79 714	4 404 73 439 77 843	4 404 73 439 77 843

ī.

Table 4. (Continued)

Figure 2. Savings in the future scenario compared to current scenario from the hospital perspective for different indications.

Savings on drug costs will not be counterbalanced by an increase in drug administration costs, since, according to expert panel opinion, IV biosimilars are expected to gain market share at the expense of the IV rituximab originator and not the SC formulation, which is still under patent protection.

The study has some limitations. First, we relied on the opinions of clinical experts gathered initially through a Delphi approach and then through a collective discussion. We are aware that these 'key informants' do not necessarily represent the whole clinical community. However, since the clinicians' home regions have adopted different policies on biosimilar drugs, our expectation is that they adequately represent the current situation across the country.

Second, we are aware that the Delphi method and experts' panel approach could foment a propensity to eliminate extreme positions and force a 'mean' consensus.³⁰ Nonetheless, this method is very useful when the problem is not confined to precise analytical techniques, but can benefit from subjective judgements on a collective basis, considering diverse backgrounds with different experience and expertise.

Third, the total dimension of the current market for rituximab per indication was estimated on the basis of epidemiological data, for a total of about \notin 124 million, which is lower than the 2016 INHS spending for rituximab (\notin 156.3 million), according to AIFA.³ However, we could not rely on the actual expenditure for rituximab since the split per indication is not provided.

Fourth, the BIA model does not incorporate the possible impact of new drugs launched for the same indications as rituximab. The longer the time horizon, the higher the level of uncertainty on our savings estimation. A more prudent 3-year time horizon would imply a \notin 79.2 million savings in the hospital scenario.

Despite these limitations, the study provides for an Italian estimate of potential savings from rituximab biosimilars since it could rely on a per-indication analysis and a panel that represents the diverse policies of regional payers on line-extensions (SC vs IV) and biosimilars versus originators.

The main question is how the savings will be used. Savings can be used just to contain public pharmaceutical expenditure or to fund innovative and cost-effective drugs or can be allocated to fund other healthcare technologies and services. Our hope is that savings re-investment will be the option chosen by the healthcare system.

Acknowledgements

The authors would like to thank the clinicians who joined the expert panel: Professor Robin Foà and Dr Maurizio Martelli (Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome – Latium); Dr Massimo Gentile (Azienda Ospedaliera di Cosenza, Calabria), Dr Marco Picardi (Policlinico Federico II, Napoli, Campania), Dr Giuseppe Rossi (ASST Spedali Civili di Brescia, Lombardy), Dr Renato Zambello (Azienda Ospedaliera Padova, Veneto) and Dr Ennio Favalli (ASST Gaetano Pini, Milano, Lombardy).

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Funding

This study was funded by Sandoz Italia Spa. No interferences occurred in carrying out the research project and in writing the manuscript, which is the sole responsibility of the authors.

ORCID iD

Carla Rognoni ២ https://orcid.org/0000-0002-6330-0591

References

- Remuzat C, Urbinati D, Kornfeld A, et al. Pharmaceutical expenditure forecast model to support health policy decision making. J Mark Access Health Policy 2014; 2: 23740–23747.
- GaBI Online Generics and Biosilimars Initiative. Biosimilars approved in Europe, http://www.gabionline. net/Biosimilars/General/Biosimilars-approved-in-Europe (accessed 22 March 2018).
- GaBI Online Generics and Biosilimars Initiative. Biosimilars applications under review by EMA, http:// www.gabionline.net/Biosimilars/General/Biosimilarsapplications-under-review-by-EMA-January-2018 (January 2018, accessed 22 March 2018).
- Italian Biosimilars Group Biosimilari in Italia. Mercato italiano: III trimestre 2017, http://www. italianbiosimilarsgroup.it/it/visualizza/report-stampatrimestrale-farmaci-biosimilari-settembre-2017-final.htm (accessed 22 March 2018).
- Caputi A, Bordonaro R, Pane F, et al. Analisi delle Delibere Regionali sui Biosimilari. Quaderni della SIF, Anno XII n.41, http://edicola.sifweb.org/media/quaderni/2016/sif_ quaderni_41_nov16.pdf (Novembre 2016, accessed 12 February 2018).
- Osservatorio Nazionale sull'impiego dei medicinali (OsMed), AIFA. 'L'uso dei Farmaci in Italia – Rapporto Nazionale 2016', http://www.aifa.gov.it/sites/default/files/ Rapporto_OsMed_2016_AIFA.pdf (accessed 12 February 2018).
- Gulácsi L, Brodszky V, Baji P, et al. The rituximab biosimilar CT-P10 in rheumatology and cancer: a budget impact analysis in 28 European countries. *Adv Ther* 2017; 34(5): 1128–1144.
- Sullivan SD, Mauskopf JA, Augustovski F, et al. Budget impact analysis-principles of good practice: report of the ISPOR 2012 Budget Impact Analysis Good Practice II Task Force. *Value Health* 2014; 17(1): 5–14.
- Assobiomedica Tariffari assistenza ospedaliera e assistenza specialistica ambulatoriale e di laboratorio, https://www.assobiomedica.it/it/analisi-documenti/tariffariospedalieri/index.html; https://www.assobiomedica.it/it/ analisi-documenti/tariffari-specialistica/index.html (accessed 22 March 2018).
- Esmé G, Trevelyan J and Robinson C. Delphi methodology in health research: how to do it? *Eur J Integr Med* 2015; 7(4):: 423–428.
- Azienda Ospedaliera Brotzu Deliberazione n.1511 del 26/07/2017, http://www.aobrotzu.it/documenti/9_383_2017 0727121539.pdf (accessed 22 March 2018).
- 12. http://www.contoannuale.tesoro.it/cognos1022/cgi-bin/ cognosisapi.dll?b_action=xts.run&CAMUsername=cog_ usr&CAMPassword=cog_usr&h_CAM_action=logo nAs&CAMNamespace=ADS&m=portal/cc.xts&m_ tab=w&b_action=cognosViewer&ui.action=run&ui. object=%2fcontent%2fpackage%5b%40name%3d% 27Sico%20Sito%27%5d%2freport%5b%40name%3 d%27Home%20Page%27%5d&ui.name=Home%20 Page&run.outputFormat=HTML&run.prompt=true&cv. header=false&cv.toolbar=false (accessed 22 March 2018).
- Bach PB, Conti RM, Muller RJ, et al. Overspending driven by oversized single dose vials of cancer drugs. *BMJ* 2016; 352: i788.

- Italian cancer figures report AIRTUM 2010. Cancer prevalence in Italy. Patients living with cancer, longterm survivors and cured patients, http://www.epiprev. it/pubblicazione/epidemiol-prev-2010-34-5-6-suppl-2?destination=node%2F570 (accessed 12 February 2018).
- Linee guida AIOM Linfomi 2017, http://www.aiom. it/professionisti/documenti-scientifici/linee-guida/ linfomi/1,4563,1 (accessed 12 February 2018).
- Filippi AR, Ciammella P and Ricardi U. Limited stage follicular lymphoma: current role of radiation therapy. *Mediterr J Hematol Infect Dis* 2016; 8(1): e2016041.
- Galaznik A, Bell JA, Ogbonnaya A, et al. Evaluation of treatment patterns among patients with diffuse large B-cell lymphoma (DLBCL). Poster PCN284 presented at the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) 22nd annual international meeting, Boston, MA, 20–24 May 2017.
- Salvi G, Innocenti I, Autore F, et al. Chronic lymphocytic leukaemia: census of patients treated in Italian Haematology Units. *Mediterr J Hematol Infect Dis* 2015; 7(1): e2015056.
- Cimmino MA, Parisi M, Moggiana G, et al. Prevalence of rheumatoid arthritis in Italy: the Chiavari study. *Ann Rheum Dis* 1998; 57: 315–318.
- Holtzer-Goor KM, Bouwmans-Frijters CAM, Schaafsma MR, et al. A cost of illness and quality of life study in patients with B-cell chronic lymphocytic leukemia (CLL) in the Netherlands. Health Economics – iMTA, 2011, https://www.eur.nl/sites/corporate/files/2017-09/ OR2011.01.pdf
- Ministero della Salute Trapianti, http://www.trapianti. salute.gov.it/imgs/C_17_pubblicazioni_2591_allegato.pdf (accessed 12 February 2018).
- 22. Petrara MR, Giunco S, Serraino D, et al. Post-transplant lymphoproliferative disorders: from epidemiology to pathogenesis-driven treatment. *Cancer Lett* 2015; 369(1): 37–44.
- Evens AM, David KA, Helenowski I, et al. Multicenter analysis of 80 solid organ transplantation recipients with post-transplantation lymphoproliferative disease: outcomes and prognostic factors in the modern era. *J Clin Oncol* 2010; 28(6): 1038–1046.
- De Waure C, Capri S, Veneziano MA, et al. Extracorporeal photopheresis for second-line treatment of chronic graftversus-host diseases: results from a Health Technology Assessment in Italy. *Value Health* 2015; 18(4): 457–466.
- 25. Ram R and Storb R. Pharmacologic prophylaxis regimens for acute graft-versus-host disease: past, present and future. *Leukemia Lymphoma* 2013; 54(8): 1591–1601.
- Associazione Italiana Registri Tumori AIRTUM, http:// www.registri-tumori.it/PDF/AIRTUM2010Prevalenza/056 147SCHEDE.pdf (accessed 12 February 2018).
- Associazione Italiana per la Ricerca sul Cancro AIRC, http://www.airc.it/tumori/linfoma-di-hodgkin.asp (accessed 12 February 2018).
- Zanella A and Barcellini W. Treatment of autoimmune hemolytic anemias. *Haematologica* 2014; 99(10): 1547– 1554.
- 29. Orphanet Il portale delle malattie rare e dei farmaci orfani, http://www.orpha.net/ (accessed 12 February 2018).
- 30. Yousuf MI. Using experts' opinions through Delphi technique. *Practical Assess Res Eval* 2007; 12(4): 1–8.