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ABSTRACT
Nephrolithiasis (NL) is frequently associated with metabolic disorders such as type 2 diabetes mellitus (T2DM), 
obesity, and chronic kidney disease (CKD), all of which alter urinary composition and increase the risk of calcium 
oxalate and uric acid stone formation. Sodium-glucose cotransporter-2 inhibitors (SGLT2i), originally developed 
for glycemic control in T2DM, have emerged as promising agents with both renoprotective and anti-lithogenic 
effects. These effects are mediated through mechanisms such as osmotic diuresis, increased urinary citrate excre-
tion (citraturia), and modulation of urinary pH, all contributing to reduced supersaturation and stone risk. This 
review provides a comprehensive overview of the mechanisms by which SGLT2i may prevent stone formation, 
alongside a critical analysis of the current clinical evidence.
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recent decades has paralleled the increasing prevalence of 
T2DM, obesity, and metabolic syndrome, likely due to the 
impact of these conditions on urinary biochemistry and 
pH (9).

Insulin resistance, the shared pathophysiological basis of 
these metabolic disorders, is closely associated with decrea-
sed urinary pH, mainly due to impaired renal ammoniagenesis 
(10,11). The acidification of the urinary milieu contributes to 
hypocitraturia by shifting citrate from its trivalent to divalent 
form (from citrate³⁻ to citrate²⁻), the latter being preferen-
tially reabsorbed by the sodium-dicarboxylate co-transporter 
NaDC1 (12,13). Concurrently, compensatory hyperinsuline-
mia may enhance urinary calcium excretion (14-16). The com-
bination of low urinary pH, hypercalciuria, and hypocitraturia 
establishes a pro-lithogenic urinary environment that favors 
the formation of both CaOx and UA stones (9,17,18).

The well-established association between T2DM and NL 
has led to growing interest in SGLT2i as potential NL-modifying 
agents. SGLT2i target the sodium-glucose co-transporter iso-
form 2 (SGLT2), encoded by the SLC5A2 gene, which is pre-
dominantly expressed in the brush-border membrane of 
proximal tubular cells, where it facilitates reabsorption of 
approximately 90% of filtered glucose (19-21).

Although early observations suggested that SGLT2i might 
increase the risk of kidney stone formation due to their uri-
cosuric effect and potential for lowering urinary pH  (22),  

Introduction
Nephrolithiasis (NL) is increasingly recognized as a syste-

mic condition rather than a merely urological disorder. Seve-
ral epidemiological studies have demonstrated a higher 
prevalence of arterial hypertension (1), obesity (2), diabetes 
mellitus (T2DM) (3), gout and dyslipidemia (4), cardiovascular 
disease (5), chronic kidney disease (CKD) (6), and low bone 
mineral density (7) among kidney stone formers.

Stone formation occurs when urinary concentrations of 
lithogenic solutes exceed their solubility thresholds, a con-
dition known as supersaturation. Relative supersaturation 
ratios (RSR) for calcium oxalate (CaOx), calcium phosphate 
(CaP), and uric acid (UA) serve as reliable surrogate markers 
for the risk of stone recurrence. Supersaturation of urine with 
calcium, oxalate, phosphate, and uric acid promotes crystal-
lization, especially in the context of reduced urinary volume 
and altered urinary pH (8). The rising incidence of NL over 
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subsequent evidence has instead revealed a protective 
role; in fact, as early as 2009, dapagliflozin was paten-
ted with the prevention of NL listed among its indications 
(23). In a large observational study comparing SGLT2i and 
GLP-1 receptor agonists in patients with T2DM, Kristensen 
et al. reported a significantly reduced risk of both incident 
(HR 0.51, 95% CI 0.37-0.71) and recurrent (HR 0.68, 95% 
CI 0.48–0.97) NL in the SGLT2i group (24). More recently, a 
meta-analysis of randomized clinical trials demonstrated 
that empagliflozin was associated with an approximate 40% 
reduction in urinary tract stone events among patients with  
T2DM (25).

This review aims to explore the physiological mechanisms 
by which SGLT2i may reduce the risk of NL, critically exami-
ning the available experimental and clinical data supporting 
their use in NL prevention.

Increased Urinary Flow
SGLT2i promote osmotic diuresis, which may contribute 

to NL prevention by reducing the urinary concentration 
of lithogenic solutes (15). However, the effect of SGLT2i on 
sodium and water excretion is variable and depends on the 
underlying clinical context.

In individuals with normal baseline tubular sodium reab-
sorption—such as healthy subjects or patients with com-
pensated T2DM—SGLT2i typically cause an acute increase 
in urinary sodium, glucose, and water excretion (26-31). 
Conversely, in clinical settings characterized by avid sodium 
retention—such as in patients with heart failure, particularly 
during acute decompensation—SGLT2 inhibition leads predo-
minantly to glycosuria-induced osmotic diuresis, with increa-
sed free water clearance and minimal changes in natriuresis 
(32-35).

Nonetheless, both the initial natriuretic and osmotic 
effects of SGLT2i are rapidly attenuated by compensatory 
mechanisms: sodium reabsorption is enhanced distally in 
response to effective hypovolemia, while water conserva-
tion is triggered by activation of the thirst mechanism and 
antidiuretic hormone release. As a result, natriuresis tends 
to be transient, whereas glucosuria persists, indicating a lack 
of pharmacological tolerance at the proximal tubule level. 
Despite the attenuation of diuresis over time, SGLT2i conti-
nue to exert favorable effects on stone prevention.

Importantly, the benefit of SGLT2i in reducing stone 
risk extends beyond simple volume expansion. In the 
SWEETSTONE trial—a randomized, double-blind, placebo-
controlled crossover study investigating the effect of empagli-
flozin in non-diabetic adults—empagliflozin improved urinary 
lithogenic parameters even without a significant increase in 
urinary volume (36,37). This finding confirms that the anti-
lithogenic effects of SGLT2i are not solely dependent on 
diuresis.

In clinical practice, it is challenging to quantify the spe-
cific contribution of pharmacologically induced diuresis to 
stone prevention, particularly because high fluid intake is 
universally recommended to all patients with a history of NL. 
This confounds the ability to isolate the incremental effect of 
SGLT2i-induced urinary flow in this population.

Effects of SGLT2 Inhibitors on Uric Acid and Urine pH
SGLT2i reduce serum uric acid concentrations and have 

been associated with a decreased risk of gout (38), likely 
through inhibition of tubular urate reabsorption via both 
the apical URAT1 and basolateral GLUT9 transporters (22). 
Although hyperuricosuria could theoretically promote UA 
stone formation, it is well established that low urinary pH—
rather than elevated uric acid excretion—is the principal  
driver of uric acid stone pathogenesis (39).

In patients with T2DM, UA stones are more prevalent than 
in non-diabetic individuals (36% vs 11%, respectively), prima-
rily due to insulin resistance-associated acidification of urine 
(9). So, the effect of SGLT2i on urinary pH becomes a critical 
point—but the evidence remains inconclusive.

Studies have yielded conflicting results regarding the 
impact of SGLT2i on urinary pH, with some reporting an 
increase in urine pH (40-42) and others a decrease (43). A key  
element in this regulatory mechanism is the sodium–
hydrogen exchanger isoform 3 (NHE3), located on the apical 
membrane of proximal tubular cells and in the thick ascending 
limb of Henle’s loop. NHE3 facilitates sodium reabsorption in 
exchange for H⁺ or NH₄⁺ ions, contributing to bicarbonate 
reabsorption: for each proton secreted, one bicarbonate 
moiety is reclaimed.

SGLT2 and NHE3 are structurally colocalized in the proxi-
mal tubule and functionally interlinked (22,44). Inhibition of 
SGLT2 may lead to reduced NHE3 activity, resulting in decre-
ased H⁺ and NH₄⁺ secretion and thus potentially increasing 
urinary pH. However, this effect is far from consistent. In 
murine models, acute administration of empagliflozin led to 
a slight increase in urinary pH, whereas chronic exposure was 
paradoxically associated with a lowering of urinary pH (45), 
despite enhanced ammoniagenesis. One plausible explana-
tion is a shift in metabolic energetic substrate utilization, with 
increased reliance on fatty acids and ketone bodies, leading 
to enhanced endogenous acid production (37,46).

The SWEETSTONE trial provided particularly nuanced 
insights into this issue. In this randomized controlled crosso-
ver study, empagliflozin induced differential pH responses in 
patients depending on the stone type. Specifically, it incre-
ased urinary pH in uric acid stone formers (from 5.3 to 5.6) 
and decreased it in calcium stone formers, thereby stabilizing 
urine pH at 5.6 across groups. Since low urinary pH is the 
major lithogenic factor in UA stones, and high urinary pH pro-
motes CaP stone formation, this “clamping effect” on pH may 
optimize RSR for both stone types (37).

Effects of SGLT2 Inhibitors on Citrate
Citrate is a key urinary inhibitor of calcium stone forma-

tion, as it binds to calcium and reduces the availability of 
free calcium ions for crystal aggregation. Recent studies have 
shown that SGLT2i significantly increase urinary citrate excre-
tion, with reported rises of up to 50% in both healthy volun-
teers and patients with T2DM (37,43,47,48). Scherr et al. (49) 
also documented increased urinary citrate levels following 
dapagliflozin administration in a patient with distal renal 
tubular acidosis secondary to tubulointerstitial nephritis.
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Interestingly, while increases in urinary citrate typically 
correlate with higher urine pH, this is not consistently obser-
ved with SGLT2i. Empagliflozin has been shown to enhance 
urinary citrate excretion even in the presence of a reduction 
in urine pH (43). Similarly, dapagliflozin was associated with 
increased urinary citrate alongside a non-significant trend 
toward lower urinary pH (50).

A strong positive correlation between urinary citrate and 
filtered glucose load has been reported (37), suggesting a 
proximal tubular mechanism linking the handling of these 
two solutes. One hypothesis is that SGLT2i may inhibit citrate 
reabsorption by downregulating the activity of the sodium-
dicarboxylate co-transporter 1 (NaDC1) in the proximal 
tubule. This effect may be mediated by indirect interactions 
involving scaffolding proteins such as MAP17, which has been 
shown to physically link SGLT2 to other transport systems, 
including NHE3 (22,44).

An alternative explanation involves the intracellular meta-
bolism of citrate. SGLT2 inhibition may reduce the activity of 
cytosolic ATP citrate lyase, an enzyme that converts citrate 
into acetyl-CoA and oxaloacetate, thereby increasing intra-
cellular citrate levels and decreasing its reabsorption via 
the basolateral membrane, ultimately leading to enhanced 
urinary excretion.

Regardless of the underlying mechanism, the increase 
in urinary citrate represents a potentially important anti- 
lithogenic effect of SGLT2i, particularly in patients with 
baseline hypocitraturia.

Effects of SGLT2 Inhibitors on Bone and  
Calcium-Phosphate Metabolism

SGLT2i have been associated with adverse skeletal effects. 
Specifically, canagliflozin and dapagliflozin have been linked 
to an increased risk of fractures (51). Canagliflozin has been 
shown to alter bone turnover markers, including elevated 
serum levels of fibroblast growth factor 23 and parathyroid 
hormone (52). In contrast, empagliflozin does not appear to 
share these effects, as no significant changes in bone biomar-
kers or fracture risk have been observed in multiple clinical 
studies (53,54).

From a renal perspective, SGLT2i increase urinary calcium 
excretion while reducing urinary phosphate excretion (55). 
Despite this, data from the SWEETSTONE trial demonstrated 
that empagliflozin treatment led to a 36% reduction in the 
RSR for CaP and had no significant impact on CaOx RSR, even 
though urinary calcium increased by 23% (37).

This paradox may be explained by the key role of brushite 
supersaturation in the pathogenesis of both CaP and CaOx 
stones. Interstitial CaP deposits—primarily hydroxyapatite—
at the tip of renal papillae, known as Randall’s plaques, act 
as nucleation sites for CaOx crystals (56-59). These plaques 
promote heterogeneous nucleation and the growth of apa-
tite and other non-brushite CaP phases (60-62). Conversely, 
CaP stones themselves often originate as intratubular plugs, 
primarily composed of brushite or carbonate apatite, that 
obstruct the ducts of Bellini and eventually extend into the 
urinary collecting system (63).

Interestingly, the combined effect of increased urinary 
citrate and reduced urine pH observed in CaP stone-formers 

treated with SGLT2i may represent a class-specific protective 
mechanism. This is in stark contrast to alkali therapy (e.g., 
potassium citrate), which increases urinary citrate but also 
raises urine pH, potentially worsening CaP supersaturation. 
Therefore, SGLT2i may offer a unique therapeutic advantage 
in patients with calcium phosphate stones by dissociating 
citraturia from urinary alkalinization (37). 

Other Potential Mechanisms
Beyond their direct metabolic effects, SGLT2i may exert 

a range of pleiotropic actions that could contribute to NL 
prevention. It has been hypothesized that, by promoting 
sustained water and energy loss, SGLT2i trigger metabolic 
adaptations similar to those observed in estivating animals—
a state of dormancy characterized by decreased metabolic 
activity and efficient redistribution of endogenous resources 
(64). These adaptations are associated with reduced oxida-
tive stress and may confer organ-level cytoprotection.

Additional proposed benefits of SGLT2i include anti-
inflammatory effects, attenuation of tubulointerstitial fibro-
sis, and reduced oxidative stress, as well as downregulation 
of osteopontin expression, a molecule critically involved 
in crystal adhesion and aggregation within renal tubules  
(65-68). These mechanisms, though not specific to lithogene-
sis, intersect with key pathways involved in the development 
of kidney stones and may contribute to a more favorable 
intrarenal environment.

Moreover, by improving insulin sensitivity, SGLT2i may 
indirectly stimulate renal ammoniagenesis, potentially cor-
recting the low urinary pH observed in insulin-resistant states 
such as type 2 diabetes and metabolic syndrome (69). This 
effect would complement their known actions on urinary 
citrate and glucose handling, reinforcing their anti-lithogenic 
potential.

Conclusion
Recent evidence strongly supports the role of SGLT2i in 

reducing the risk of NL. In patients with T2DM, these agents 
have been associated with an approximate 36% reduction in 
stone events (25), while in broader populations, risk reduc-
tions ranging from 26% to 49% have been reported (24,47,69). 
Notably, non-diabetic males and Japanese patients with 
T2DM treated with SGLT2i demonstrate lower rates of stone 
recurrence compared to those receiving other antidiabetic 
therapies (67).

These findings suggest that the clinical indications for 
SGLT2i—already extended beyond glycemic control to 
encompass cardiovascular and renal protection (70)—could 
reasonably be expanded to include NL prevention. Among 
the agents in this class, empagliflozin may offer specific bene-
fits in patients predisposed to CaP stones, due to its ability 
to modulate both urinary citrate and pH without promoting 
phosphate supersaturation (37).

Nevertheless, further high-quality studies, including ran-
domized controlled trials, are warranted to confirm the long-
term efficacy of SGLT2i across different stone phenotypes and 
to clarify the underlying pathophysiological mechanisms that 
mediate their protective effects.
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