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ABSTR ACT: Stereotypical behaviors induced by methamphetamine (METH) overdose are one of the overt symptoms of METH abuse, which can be 
easily assessed in animal models. Currently, there is no successful treatment for METH overdose. There is increasing evidence that elevated levels of brain 
histamine can attenuate METH-induced behavioral abnormalities, which might therefore constitute a novel therapeutic treatment for METH abuse and 
METH overdose. In mammals, histamine N-methyltransferase (HMT) is the sole enzyme responsible for degrading histamine in the brain. Metoprine, 
one of the most potent HMT inhibitors, can cross the blood–brain barrier and increase brain histamine levels by inhibiting HMT. Consequently, this 
compound can be a candidate for a prototype of drugs for the treatment of METH overdose.
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Introduction
Methamphetamine (METH; N-methyl-1-phenylpropan-2- 
amine) is a powerful psychomotor stimulant similar in struc-
ture to amphetamine (AMPH; 1-phenylpropan-2-amine). 
Although METH is used in the treatment of attention-deficit 
hyperactivity disorder, narcolepsy, and severe obesity,1 the 
clinical utility of METH is limited by its abuse potential. 
METH is typically abused via intranasal, intravenous, or 
inhalation routes of administration, rather than orally, world-
wide, including Japan and the United States.2,3 METH addic-
tion, including adverse effects associated with acute METH 
use and long-term effects associated with METH addiction, 
is a serious public health problem.4–8 Currently, there are no 
effective treatments for METH addiction, abuse or acute 
overdose.7,9,10

The molecular basis of action of METH is considered to 
be very similar to that of AMPH because of their structural 
similarities. METH interacts with proteins that affect mono-
amine function, including the dopamine transporter (DAT), 
monoamine oxidases (MAOs), and the vesicular mono-
amine transporter-2 (VMAT2), inhibiting their functions 
in a manner similar to AMPH,11,12 although with somewhat 
different potencies on dopamine transport.13,14 METH inhi-
bition of DAT, MAO, and VMAT2 results in the elevation of 
presynaptic cytosolic DA levels and the impulse-independent 

release of dopamine into the synaptic clefts of the dopaminergic 
neurons via reverse transport mediated by DAT. The abnor-
mally released dopamine then binds to pre- and postsynaptic 
dopamine D1 and D2 receptors, resulting in behavioral and 
psychological alterations.15 Behavioral alterations in animals 
are augmented with repeated treatment in a dose-dependent 
manner (eg, sensitization).16 Dopamine receptor antagonists 
drastically attenuate METH-induced behavioral and 
psychological alterations, including both acute and sensitized 
effects. In human beings, METH sensitization is associated 
with progressive development of METH-induced psychosis,17 
which is improved by treatment with haloperidol,18 a classical 
antipsychotic that has antagonistic actions at dopamine D2 
receptors, but with pronounced extrapyramidal side effects.19,20 
In the search for an effective pharmacotherapy for METH-
induced symptoms without these adverse effects, other neu-
ronal systems have been investigated.21–24 Our research has 
focused on a possible involvement of brain histaminergic 
systems in METH actions, especially high-dose METH 
effects such as METH-induced stereotypy in mice. Here, we 
will review the brain histaminergic systems, and evidence that 
may suggest that alterations in histaminergic function may be 
a possible therapeutic approach to the treatment of METH 
overdose associated with high METH doses, or the sensitized 
state associated with long-term METH use.
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METH Overdose: Experimental Procedures  
and Behavioral Effects
In rodents, systemic administration of METH induces loco-
motor hyperactivity that is replaced by repetitive and com-
pulsive behaviors called stereotypies at higher doses.16,25,26 
For instance, a single administration of METH at doses of 
0.5–2  mg/kg induces hyperlocomotion,16,27–30 while rodents 
exhibit stereotypy when treated with higher doses of METH 
(5–20  mg/kg).31–37 Rodents exhibiting stereotypy after acute 
high doses of METH are considered to be a model for METH 
overdose. To evaluate METH-induced stereotypy reproducibly, 
Tatsuta et al developed an experimental procedure using mice 
as follows35: test subjects are placed in a transparent acrylic box 
(30 × 30 × 35 cm) with ~25 g of fresh wood chips spread on 
the floor of the chamber and observed for stereotypy for one 
hour after drug challenge by observers unaware of the treat-
ments. METH-induced stereotypy lasts for ~170 minutes after 
a 10  mg/kg i.p. injection in mice.35 The frequencies of each 
behavioral component of stereotypical behavior (see description 
of categories below) observed for two-hour postinjection are the 
same as the frequencies observed for one hour (two-hour obser-
vations38 vs. one-hour observations39). Therefore, the period 
of one hour was chosen in all of our subsequent experiments. 
Behavior is assessed at 30-second intervals, and the predominant 
behavior observed during each interval is recorded. Since indi-
vidual stereotypical behaviors are unchanged for long periods 
(.30 seconds) after drug treatment, it is possible to record the 
observations by hand. The behaviors scored are inactive (awake 
and inactive, or sleeping), ambulation, rearing (standing on the 
hind legs, with forelegs unsupported or supported on the walls), 
persistent locomotion, head bobbing (up-and-down movements 
of the head), continuous sniffing, circling, and continuous nail 
and/or wood chip biting or licking. Ambulation, rearing, and 
persistent locomotion are considered to be exploratory behav-
iors, and the last four categories are considered stereotypies. Ste-
reotypical cage climbing40 is not observed in our experimental 
procedure because of the use of an acrylic test chamber without 
a stainless steel grid top. Persistent locomotion is not classified as 
stereotypy because the mice scored as having persistent locomotion 
show horizontal locomotor activity less than or equal to that 
displayed by mice showing hyperlocomotion induced by 1 mg/kg 
METH (which is not generally defined as a stereotypy) mea-
sured by automated Animex Auto.41 The cumulative number of 
intervals within each five-minute period in which stereotypies 
are observed is evaluated as a time course (maximal value = 10). 
Animal handling and care were conducted in accordance with 
the Guide for the Care and Use of Laboratory Animals (8th edition, 
Institute of Laboratory Animal Resources-National Research 
Council, National Academy Press, 2011), and all experiments 
were reviewed and approved by the Institutional Animal 
Research Committee of Hyogo College of Medicine.

Using the experimental procedure described above, we 
found that a single administration of METH (5  mg/kg) 
induces stereotypical sniffing, while stereotypical biting is 

predominantly observed at 10  mg/kg METH.33,35 Another 
group reported that a single administration of METH 
(20  mg/kg) induces repetitive self-injurious behavior.31,37 
In line with these observations, METH-induced stereotypical 
biting appears to be a more severe symptom than stereotypical 
sniffing as an animal model of METH overdose. Possible 
pharmacological properties of compounds that will be effec-
tive for METH overdose should (1) inhibit METH-induced 
stereotypical biting or (2) shift stereotypical biting to sniffing 
(eg, a leftward shift in the METH dose–response relation-
ship, producing less severe stereotypies). Using this approach, 
we investigated a possible involvement of brain histaminergic 
neurons in METH-induced stereotypical behavior, as a way 
to approach potential novel treatments for METH overdose.

Brain Histaminergic Systems: Potential Roles in 
Drug Addiction, Drug Abuse, and Drug Overdose
Histamine is a biogenic amine produced by the body and 
plays major roles in allergic reactions and secretion of gastric 
acid.42–44 It is also released by neurons that originate from the 
tuberomammillary nucleus of the posterior hypothalamus and 
project to various brain areas,45,46 suggesting that histamine has 
crucial roles in the central nervous system.47 Brain histamine is 
considered to be involved in the regulation of arousal, hormone 
release, feeding/drinking, and pain perception.48–54 As shown 
in Figure 1, histamine is synthesized by decarboxylation of 
the amino acid l-histidine in a reaction catalyzed by histidine 
decarboxylase (HDC), stored in mast cells, basophils, entero-
chromaffin-like cells, and histaminergic neurons, and released 
on stimulation. Released histamine in turn activates histamin-
ergic receptors, causing physiological reactions. In brain, for 
termination of histaminergic neurotransmission after activa-
tion of histamine receptors, histamine is transferred from the 
extracellular space into cytoplasm by organic cation transporter 
3 and/or the equilibrative nucleoside transporter (ENT4), and 
catabolized by the cytosolic enzyme histamine N-methyltrans-
ferase (HMT) to form N-methylhistamine, which is inactive 
in the histaminergic system.55,56 HMT is the sole enzyme 
that degrades histamine in brain,57,58 whereas diamine oxidase 
(DAO; histaminase) catabolizes histamine in peripheral tis-
sues.49,59 It is noted that both HMT mRNA and HMT-like 
immunoreactivity are expressed in mouse stomach57,58 and that 
the urinary excretions of histamine and N t-methylhistamine 
are affected by food intake in human beings;60 there is a possi-
bility that HMT might, at least in part, function in peripherally.

There is evidence that some drugs of abuse (METH, etha-
nol, and caffeine), acting through quite different initial molecu-
lar targets, release histamine and increase endogenous histamine 
levels in brain.61–65 What is the role of released histamine by these 
drugs in drug abuse and addiction? There are two main possi-
bilities: (1) that histamine contributes to the addictive or adverse 
effects associated with these drugs or (2) that histamine release 
acts in opposition to those effects and is part of a homeostatic 
counterreaction. Supporting this latter idea, Chandorkar and 
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coworkers demonstrated that intraperitoneal administration of 
high doses of l-histidine, a substrate for histamine synthesis 
(Fig. 1), reduces METH- and apomorphine-induced stereo-
typical behaviors in mice, suggesting that increased levels of 
histamine in brain suppress abnormal behaviors associated with 
administration of high doses of these drugs.36,66 Observation 
reported by Ito et al support Chandorkar’s perspective, finding 
that pretreatment with l-histidine inhibits METH-induced 
stereotypy and behavioral sensitization in rats, while stereotypy 
and behavioral sensitization are exacerbated when rats were pre-
treated with a-fluoromethylhistidine, an irreversible inhibitor 
of HDC (Fig. 1) that reduces brain histamine levels.67 In line 
with these observations, it is likely that increasing levels of brain 
histamine may attenuate METH-induced behavioral effects. 
This is supported by the evidence that the l-histidine effects 
were blocked by treatment with brain-penetrating histamine 
H1/H2 receptor antagonists.67

HMT: A Key Enzyme Regulating High-dose Effects 
of METH
As described above, compounds such as l-histidine and 
a-fluoromethylhistidine are useful for the increase or decrease 
in neuronal histamine release, resulting in increasing or 
decreasing brain histamine levels, respectively.66–71 However, 
these compounds potentially alter the levels of histamines 
throughout the body. By contrast, inhibition of HMT activ-
ity predominantly modulates central histaminergic activity, 
while peripheral histaminergic activity is affected, to a lesser 
extent, by inhibiting an HMT activity. At present, there are 
no compounds that increase HMT activity. Several HMT 
inhibitors are available for research purposes.72–74 The dimaprit 
analog SKF 91488 (S-[4-(N,N-dimethylamino)butyl]isothio-
urea) is one of the most potent HMT inhibitors currently 
known.74 However, to inhibit HMT activity in the brain, SKF 
91488 needs to be administered by an intracerebroventricular 

route.65,75 Intraperitoneal administration of SKF 91488 does 
not appear to affect HMT activity in the brain, suggesting that 
the compound does not cross the brood–brain barrier.74 There 
are no reports of the effects of SKF 91488 on rodent behavior 
except that by Malmberg-Aiello et al,75 which describes that 
intracerebroventricular administration of SKF 91488 produces 
antinociceptive effects in hot plate, abdominal constriction, 
and paw pressure tests (Table 1). These observations suggest 
that SKF 91488 increases brain histamine levels by inhibiting 
an HMT activity resulting in antinociceptive effects by acti-
vating central histaminergic neurotransmission52 and that 
HMT inhibitors may be used to reveal important roles of cen-
tral histaminergic system. However, an alternative compound 
would be desirable for both research and clinical applications.

In contrast to the limitations of SKF 9148874 for studies 
of central histamine function, metoprine (2,4-diamino-5-
(3′,4′-dichlorophenyl)-6-methylpyrimidine; formerly called 
BW 197U), a diaminopyrimidine derivative and potent HMT 
inhibitor,73 readily crosses the blood–brain barrier.76 Thus, this 
compound can be administered systemically in order to inhibit 
the HMT activity in the brain. Intraperitoneal administration 
of metoprine produces various behavioral effects, including 
decreases in food intake77 and increases in water consump-
tion.78 These observations support a hypothesis that central 
histaminergic system may involve in the regulation of feeding/
drinking.54 Studies with metoprine also suggest that brain 
histaminergic systems may be involved in mood and memory 
processes.79,80 Regarding regulation of drug abuse-related phe-
notypes by central histaminergic systems, Itoh et al81 reported 
that pretreatment with metoprine inhibited METH-induced 
hyperlocomotion in mice, suggesting that central histamin-
ergic systems inhibit METH-induced behavioral effects. We 
have investigated whether metoprine could inhibit METH-
induced stereotypy, a high-dose behavioral effect intended to 
model METH overdose. Pretreatment with metoprine dose 

Figure 1. histamine synthesis and catabolism in mammals.
Abbreviations: aDh, alcohol dehydrogenase; DaO, diamine oxidase; hDC, histidine decarboxylase; hMT, histamine N-methyltransferase; MaO, 
monoamine oxidase; sah, S-adenosylhomosysteine; saM, S-adenosylmethionine.
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dependently decreased METH-induced stereotypical biting, 
while increasing sniffing, suggesting that metoprine may ame-
liorate high-dose METH-induced symptoms by producing a 
leftward shift in METH behavioral effects (Table 1).65 The 
inhibitory effect of metoprine on METH-induced stereotypi-
cal biting is likely to be mediated by histamine H1 (but not 
H2/H3) receptors located in the brain, since the metoprine 
effect was blocked by coadministration of metoprine with brain-
penetrating histamine H1 receptor antagonists.65 It is likely 
that metoprine-activated histaminergic neurotransmission via 
central histamine H1 receptors accounted for the attenuation 
of METH-induced stereotypical biting. This is supported by 
the evidence that (1) metoprine increased histamine levels, 
but decreased N t-methylhistamine levels, in the hypothala-
mus and (2) pretreatment with l-histidine, which increased 
the levels of brain histamine, also reduced the frequency of 
METH-induced stereotypical biting.82 Iwabuchi et al83 

reported that METH-induced locomotor hyperactivity and 
the development of behavioral sensitization were facilitated 
more in the histamine H1/H2 gene double knockout mice 
than in the wild-type mice, indicating that brain histaminer-
gic system is negatively associated with METH action via his-
tamine H1/H2 receptors (see also reports by Munzar et al,84,85 
which described a possible involvement of histamine H3 
receptors in METH-seeking behavior). In addition, pretreat-
ment with histamine H3 receptor (autoreceptor) agonists such 
as (R)-a-methylhistamine, imetit, and immepip decreased 
hypothalamic histamine levels and increased the frequency of 
METH-induced stereotypical biting.86 Moreover, it was noted 
that there was a very strong negative correlation (r = -0.918, 
P  ,  0.001) between the frequency of METH-induced ste-
reotypical biting and hypothalamic histamine levels, suggest-
ing that activation of brain histaminergic system may suppress 
high-dose behavioral effects of METH, and might conse-
quently reduce high-dose effects associated with the progres-
sion to drug dependence and acute overdose.87

HMT Inhibitors: Candidate Compounds 
of Treatment for METH Overdose
No agents that modulate histaminergic system other than the 
HMT inhibitors and l-histidine have been reported to ame-
liorate symptoms of acute injections of high-dose METH, 
although ABT-239, an antagonist selective for histamine 
H3 receptors, attenuates moderate doses of METH-induced 
locomotor hyperactivity.88 In our preliminary experiments, 
metoprine itself did not induce an anxiety-like behavior and 
memory impairments in the marble-burying test and Y-maze 
test, respectively (S. Okumura and T. Sakamoto, unpublished 
observations). Therefore, metoprine is likely to have limited 
side effects, although it has been associated with increases in 
locomotor behaviors,65,89,90 anxiogenic79 (but there is a nega-
tive finding),65 antiamnesic,80 and antinociceptive effects75 in 
rodents (Table 1). Regarding metoprine-induced locomotor 
hyperactivity, a dose–response effect of metoprine on gen-
eral locomotion was biphasic with the greatest hyperactivity 
noted at a dose of 10  mg/kg of metoprine.65 The biphasic 
reaction to metoprine dose appears to be mediated by brain 
histamine-mediated effects, since histamine itself injected 
into the brain induces biphasic locomotor alterations as 
well.91,92 Several types of seizures are also inhibited by meto-
prine (Table 1).70,71,93,94 Whether similar mechanisms underlie 
these effects and effects on METH-induced behavior is 
uncertain. In any case, the anticonvulsant topiramate did not 
affect METH-induced stereotypical biting, suggesting that 
the antagonism of METH-induced effects by metoprine is 
not something that is produced by all anticonvulsive drugs.38

Another piece of evidence consistent with histaminergic 
modulation of systems associated with high-dose METH 
effects comes from studies of HDC gene knockout mice, 
which demonstrate tic-like stereotypical movements, which 
can be ameliorated by histamine repletion.95 This might 

Table 1. effects of hMT inhibitors on rodent behaviors.

HMT INHIBITOR EFFECT REFERENCE

Feeding/drinking

Metoprine Decrease in food intake 77

Metoprine Increase in water consumption 78

Mood

Metoprine anxiogenic-like 79

Memory process

Metoprine antiamnesic 80

Pain

sKF 91488 antinociceptive 75

BW 301u antinociceptive 75

Locomotor activity

Metoprine Increase in locomotor activity 89

Metoprine Increase in number of rearing 89

Metoprine Increase in locomotor activity 65

Metoprine Increase in locomotor activity 90

Seizures

Metoprine Inhibition of audiogenic seizure 93

Metoprine Decrease in duration of 
convulsions

70

Metoprine Inhibition of amygdaloid  
kindled seizure

94

Metoprine Delay in the onset of seizure 
episodes 

71

METH-induced behavior

Metoprine Decrease in MeTh-induced 
hyperlocomotion 

81

Metoprine Decrease in MeTh-induced 
stereotypical biting

65

sKF 91488 Decrease in MeTh-induced 
stereotypical biting 

65

Notes: Metoprine = 2,4-diamino-5-(3′,4′-dichlorophenyl)-6-methylpyrimidine, 
sKF 91488 = S-[4-(N, N-dimethylamino)butyl]isothiourea, BW 301u = 2,4- 
diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine.
Abbreviations: hMT, histamine N-methyltransferase; MeTh, methamphetamine.
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suggest that modulation of histaminergic function might 
be useful in other types of striatal dysfunctions associated 
with abnormal movements, or repetitive behaviors. With 
regard to the high-dose METH effects associated with 
sensitization or other adverse effects, it would appear that 
metoprine may be beneficial based on the model discussed 
here. Possible treatments of metoprine with histamine H3 
receptor antagonists or with modafinil for METH overdose 
should be evaluated in the future studies because histamine 
H3 receptor antagonists and modafinil increase tissue lev-
els of histamine in the hypothalamus.96,97 It remains to 
be seen how metoprine will affect other METH-induced 
behaviors, specifically, including others more specific to 
addiction or METH overdose. In any case, the present data 
support the proposal that HMT inhibitors such as meto-
prine are possible candidate compounds for the treatment 
of METH-related conditions, including METH-induced 
psychosis and overdose.
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