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Introduction
Cancer is a biologically complex disease, with character-
istics acquired during the course of a multistep develop-
ment process that allow cancer cells to survive, prolifer-
ate and disseminate by sustaining proliferative signaling, 
evading growth suppressors, resisting cell death, enabling 
replicative immortality, inducing angiogenesis, activating 
invasion and metastasis, deregulating cellular metabolism 
and evading the immune system [1]. Underlying all these 
features is instability in the tumor genome that defines the 
molecular fingerprint of each cancer type [2].  
In this landscape, advances in tumor genome sequencing 
using next generation sequencing (NGS) technologies 
have dramatically changed oncology research, leading 

to a deeper understanding of most genetic abnormalities 
involved in cancer development and progression [3]. In 
the last decade, many NGS-based studies have provid-
ed a comprehensive molecular picture of several types 
of cancer, and have led to the identification of a large 
number of new genomic, transcriptomic and epigenomic 
alterations, expanding knowledge about complexity, het-
erogeneity and evolution of the neoplastic disease pro-
cess [4-15]. 
NGS technologies offer different applications depending 
on the aim of the research, the type of material to be se-
quenced, the coverage, and finally the speed and cost of 
sequencing [16, 17]. Whole genome sequencing (WGS) 
determines the sequence of the complete genome, provid-
ing information on both coding and non-coding regions 
and structural variants. However, interpretation of the data 
generated is difficult due to large volume of information 
generated, meaning that this approach can be time con-
suming and expensive. Moreover, some variants can be 
missed because of variation in coverage across the ge-
nome. In contrast, whole exome sequencing (WES) deter-
mines the sequence of coding regions only, making it faster 
and cheaper than WGS, and the functional consequences of 
variants are easier to interpret. However, all variations in 
non-coding regions are missed. Therefore, both WGS and 
WES are frequently performed together in order to detect 
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as many variants as possible. Finally, targeted sequencing 
determines the sequence of specific genes or parts of genes, 
focusing on particular regions of interest, selected accord-
ing to their biological relevance. This approach is usually 
less costly than the others (although total cost depends on 
the size of the gene panel), has a wide sequence cover-
age and is preferred for a clinical application. NGS tech-
nologies can also be used to sequence RNA, referred to as 
RNA-Seq, providing data on gene expression, novel cryptic 
translocations or gene fusions [18-21]. Thus, the integrated 
analysis of WGS and RNA-Seq can facilitate the interpreta-
tion of a large number of genomic alterations detected in 
the cancer genome, and can increase mutation detection 
performance, especially for low purity tumors [22-24]. 
In addition to gene expression and fusions, RNA-Seq can 
provide a broader profile of all tumor transcriptome, in-
cluding noncoding RNAs, such as microRNAs (miRNAs), 
small interfering RNAs, ribosomal RNAs, small nucleolar 
RNAs and long noncoding RNAs, that represent more than 
half of the cancer transcriptome and play an important and 
growing role in multiple biological and pathological cel-
lular processes [25-28].
All these tumor genome sequencing assays, individually or 
in combination with each other, have a number of potential 
applications. This includes the identification of clinically 
useful prognostic and predictive biomarkers, and the de-
velopment of increasingly precise diagnostics and target-
ed therapeutics for application in personalized medicine, 
driven by the molecular profile of each individual disease 
and patient [29]. 
However, despite the rapid progression of NGS-technol-
ogies and their interesting different applications, several 
challenges remain before these can be incorporated into 
clinical practice. Firstly, NGS generates a huge amount of 
data that are not always easy to interpret. Sophisticated and 
expensive software, as well as bioinformatics algorithms, 
are required for the functional naming of each genomic al-
teration, but the reproducibility and accessibility of these 
algorithms still needs to be enhanced to allow the output 
data to be presented in a transparent, reproducible and un-
derstandable manner [30]. Moreover, overall tumor com-
plexity makes the interpretation of sequencing output data 
even more difficult. In particular, intratumor heterogeneity 
can result in underestimation of the tumor genomics land-
scape based on data from single tumor biopsy samples [31].  
Circulating tumor DNA (ctDNA) and cell-free circulat-
ing DNA (cfDNA) may represent an alternative promising 
source for accessing the tumor genome, offering the pos-
sibility of non-invasive mutational assessment and reduc-
ing heterogeneity-related biases compared with single-site 

biopsies [32]. It may also enhance the understanding of 
clonal changes during treatment, and being useful for pa-
tient selection and dynamic monitoring of the response to 
targeted drug therapy over time [33].
Another limitation is the availability, quantity and qual-
ity of specimens for sequencing. Indeed, most NGS plat-
forms have library preparations optimized for a specific 
DNA quantity and quality easily obtained from fresh- 
frozen (FF) samples. However, high-purity FF speci-
mens are often not available. From a research point of 
view, this limits the size of samples analyzed and thus the 
statistical power of the studies, and from a clinical point 
of view the implementation of a sequencing workflow in 
clinical laboratories is reduced. Many efforts are being 
made to optimize sequencing protocols on low-quality 
DNA, derived from formalin-fixed paraffin-embedded 
(FFEP) specimens, facilitating the widespread applica-
tion of NGS technologies both in research and clinical 
settings [34, 35].
Finally, there are also ethical issues to be considered and 
investigated. For example, should patients and family 
members be informed about incidental findings of novel 
variants that may be of clinical significance, especially 
those related to inherited susceptibility to cancer or to other 
diseases [36, 37]?  Indeed, once sequencing data have been 
mapped, the tumor DNA sequence should be compared 
with the germ-line DNA sequence from the same patient in 
order to identify the somatic cancer-specific variants only. 
During this process, incidental variants in protein-cod-
ing genes, including some associated with unrecognized  
disease, future disease risks, drug response, carrier status, 
and variants of uncertain significance can be found. 
In conclusion, NGS technologies have certainly shed light 
on many dark areas of cancer molecular biology and rep-
resent a milestone in recent oncology research. However, 
there are still many issues to be resolved before the ap-
plication of this approach in clinical practice can be con-
sidered, and to shed light on the many areas that remain in 
the shadows.
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