
Arch Physioter 2025; 15: 9-18
ISSN 2057-0082 | DOI: 10.33393/aop.2025.3289
ORIGINAL RESEARCH ARTICLE

Archives of Physiotherapy - ISSN 2057-0082 - www.archivesofphysiotherapy.com
© 2025 The Authors. This article is published by AboutScience and licensed under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).
Commercial use is not permitted and is subject to Publisher’s permissions. Full information is available at www.aboutscience.eu

Discriminative ability, responsiveness, and 
interpretability of smoothness index of gait in people 
with multiple sclerosis
Stefano Filippo Castiglia 1,2, Fulvio Dal Farra 3, Dante Trabassi 1, Andrea Turolla 4,5, Mariano Serrao 1,6,  
Ugo Nocentini 7, Paolo Brasiliano 8, Elena Bergamini 9, Marco Tramontano 4,5

1 Department of Medico – Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, Latina - Italy
2Department of Brain and Behavioral Sciences, University of Pavia, Pavia - Italy
3 Department of Information Engineering, University of Brescia, Brescia - Italy
4 Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater University of Bologna, Bologna - Italy
5 Unit of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna - Italy
6Gait Analysis LAB Policlinico Italia, Roma - Italy
7Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome - Italy
8Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome - Italy
9 Department of Management, Information and Production Engineering, University of Bergamo, Dalmine - Italy

ABSTRACT
Introduction: Gait impairments are common in People with Multiple Sclerosis (PwMS). Several studies have examined the clino-
metric properties of Inertial Measurement Units (IMUs), with LDLJa identified as a robust metric for gait smoothness. However, 
its responsiveness and interpretability have not been explored.
Methods: This cross-sectional study at IRCCS Santa Lucia Hospital enrolled 44 PwMS (age: 28-71; EDSS: 0-6) and 43 age- and 
gait-speed-matched healthy participants (HP). Two physiotherapists conducted assessments with five synchronized IMUs dur-
ing a 10-meter walk at participants’ preferred speed. Data were collected at baseline (T0) and after 4 weeks of training (T1).
Results: Significant differences in log dimensionless jerk (LDLJa) were found between PwMS and HP in the AP (p < 0.001, d = 
0.63), ML (p < 0.001, d = 1.08), and CC (p = 0.03, d = 0.68) directions. PwMS had lower LDLJaAP values (< -4.88) and LDLJaML 
values (< -5.40) with probabilities of 63% and 76%, respectively. ΔLDLJaML demonstrated good responsiveness to rehabilitation 
(AUC ~0.80), with improvements >4.02% representing the optimal MCID for clinical improvement in MiniBesTest.
Conclusion: Lower LDLJa values in the AP and ML directions characterize gait smoothness impairment in PwMS. LDLJa in the ML 
direction is responsive to balance-focused rehabilitation, highlighting its potential for tracking gait disorders and rehabilitation 
progress.
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Key messages:

• What is already known about this topic: A series of trunk-accelera-
tion-derived gait quality indexes are considered effective for assess-
ing gait characteristics such as stability, symmetry, and smoothness 
in different populations, including patients with multiple sclerosis.

What does the study add: 

• This study highlights the potential of smoothness index “LDLJa” 
to serve as a reliable and responsive measure for characterizing 
gait disorders and tracking rehabilitation progress in patients 
with multiple sclerosis.

Introduction
Gait and balance impairments represent frequent issues in 

people with multiple sclerosis (PwMS), leading to limitations in 
daily activities and negatively impacting quality of life (1,2). In 
rehabilitation, gait training has proven to be effective in PwMS, 
improving gait speed, cadence, stride-to-stride variability, 
endurance, and postural stability. In this context, the quantita-
tive assessment of the different gait-specific aspects is import-
ant and crucial (3,4).
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In recent years, the use of wearable IMUs has become 
widespread in the clinical field due to their good reliability 
and validity in assessing human body movement (5), as well 
as their valuable properties in terms of practicability and 
cost-effectiveness (6). IMUs are motion-tracking devices con-
sisting of an accelerometer, gyroscope, and (in some cases)  
magnetometer, which measure acceleration, angular veloc-
ity, and magnetic fields, allowing for the determination of 
motion and orientation.

In this context, several studies have investigated the cli-
nometric properties of IMU sensors, obtaining satisfactory 
results in both healthy individuals and patients with neuro-
logical disorders (7,8). 

A series of trunk-acceleration derived gait quality indexes 
can be retrieved from IMUs, that yield crucial information 
for evaluating motor abilities and monitoring recovery prog-
ress. Specifically, the normalized Root Mean Square, the  
short–term Lyapunov’s exponent, the Harmonic ratio, the 
improved Harmonic Ratio, and the Log Dimensionless Jerk 
(LDLJ), obtained from trunk acceleration signals, are consid-
ered effective for assessing gait characteristics such as stabil-
ity, symmetry, and smoothness in different populations (9-12), 
including PwMS (13,14). Recently, LDLJa (15), i.e., LDLJ calcu-
lated using the three-dimensional accelerations measured 
using a trunk-mounted IMU during a 10 Meter-Walk-Test 
(10MWT), has proven to be able to detect gait differences 
in terms of smoothness, in PwMS (16). Furthermore, LDLJa 
significantly improved after a rehabilitation program focusing 
on dynamic balance rehabilitation strategies (17). LDLJa has 
been described as the most robust metric for calculating gait 
smoothness (15,18). Indeed, it quantifies gait smoothness 
by calculating a normalized measure of the rate of change 
of acceleration that is dimensionless and scaled using the 
logarithm, thus removing the influence of movement dura-
tion and amplitude, allowing for comparisons across individ-
uals and movement types (15). Gait smoothness has been 
described as an indicator of dynamic balance capabilities and 
fall risk in older adults and people with neurologic conditions 
(18-22). This relationship between gait smoothness and bal-
ance control is particularly relevant in people with neurolog-
ical disorders, as smoothness reflects the efficiency of the 
neuromuscular system in coordinating motor tasks, which is 
closely linked to balance control (22). Additionally, a recent 
study revealed that balance-focused dynamic rehabilitation 
strategies can significantly modify gait smoothness (23). 
However, its discriminative ability, as well as its threshold 
values for identifying impairments in the gait smoothness of 
PwMS, has never been explored. Nevertheless, before con-
sidering LDLJa as a clinical outcome measure, its responsive-
ness should be assessed, which refers to its ability to change 
over time and align with clinical modifications after a rehabil-
itation intervention (24,25).

In this context, one of the most considered parameters 
is the Minimal Clinically Important Difference (MCID), also 
known as minimal important change, which is defined as the 
smallest change in a measure perceived as beneficial by indi-
viduals and potentially leading to different clinical decision- 
making (26). This definition implies that this change needs to 
be perceived by both clinicians and individuals. Studying the 

MCID could be useful for healthcare providers as it provides 
a benchmark to determine whether a patient’s improvement 
or decline is clinically meaningful. This may help clinicians to 
make informed decisions about the effectiveness of inter-
ventions and to tailor rehabilitation programs more precisely 
to individual needs (27). There is no consensus on the best 
method to determine MCID, but the anchor-based approach 
is widely recognized. It uses an external criterion (the anchor), 
which is a well-interpretable measurement instrument, to 
establish what patients and clinicians consider important 
improvements or worsening. A commonly employed method 
in the anchor-based approach is the mean change, where 
the MCID is determined by calculating the average change 
in score on the assessed instrument within the subgroup of 
patients who have experienced minimal important change 
according to the anchor.

Our hypotheses were that LDLJa may accurately capture 
abnormalities in movement smoothness and reflect the over-
all postural and balance control of PwMS. We also hypothe-
sized that LDLJa might be sensitive enough to detect clinically 
meaningful improvements in movement smoothness follow-
ing rehabilitation. Therefore, the aims of this study were: i) to 
assess the ability of LDLJa to characterize gait abnormalities in 
PwMS in terms of movement smoothness, compared with HP; 
ii) to evaluate the sensitivity of LDLJa in detecting significant 
improvements in movement smoothness in PwMS performing 
the 10 Meter-Walk-Test (10MWT) following rehabilitation. 

Materials and methods
Study design and participants

This cross-sectional study was conducted at the IRCCS 
Santa Lucia Hospital (Institute for Research and Healthcare) 
and received approval from the Local Independent Ethics 
Committee under protocol number CE/PROG.812. All proce-
dures adhered to national and institutional ethical standards 
for human experimentation, the World Medical Association 
Declaration of Helsinki, and the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE) guide-
lines. Written consent was obtained from all participants to 
publish results from their clinical examinations and instru-
mental tests. Eligibility was determined by a researcher not 
involved in the assessment sessions, based on specific inclu-
sion and exclusion criteria. Participants with MS diagnosed 
according to the McDonald’s Criteria were recruited and 
enrolled through consecutive sampling between November 
2020 and October 2022. 

The inclusion criteria were as follows: i) a diagnosis of 
Relapsing-Remitting (RR) or Secondary-Progressive (SP) MS 
by an experienced neurologist; ii) native Italian speakers; 
iii) age between 28 and 71 years; iv) an Expanded Disability 
Status Scale (EDSS) (28) score between 0 and 6; v) ability to 
walk independently for at least 50 meters. Exclusion criteria 
included: i) the presence of psychiatric or neurological dis-
orders (other than MS) or other conditions that could affect 
cognitive or motor performance; ii) a clinical relapse within 
three months prior to enrollment; iii) steroid therapies within 
30 days prior to enrollment; iv) lower extremity fractures 
within three months prior to enrollment. 
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Each participant underwent a clinical evaluation using 
the Mini-BESTest, which assessed dynamic balance, postural 
responses, anticipatory postural adjustments, sensory orien-
tation, and gait adaptability to changing task demands (29). 
As a result, data from 44 PwMS were analyzed. 

For comparison purposes, gait data from 98 healthy indi-
viduals walking at preferred and self-determined slow walk-
ing speeds underwent an optimal matching the procedure 
using propensity score difference method (30). Age and gait 
speed (31,32) were input as covariates into a logistic regres-
sion model to compute propensity scores. Following an 
anamnestic and clinical examination of joint pain levels and 
range of motion, individuals with gait-affecting diseases such 
as peripheral neuropathies, clinically defined osteoarthritis, 
or joint replacement were excluded from the control group. 
As a result, gait data from 43 age- and gait speed–matched 
HP were included in this study. The effectiveness of the 
matching procedure was tested through a Mann – Whitney 
test after verifying the normality and homoscedasticity of the 
distributions through the Shapiro – Wilk test (Age: p = 0.09; 
gait speed: p = 0.29; sex: p = 0.36). 

Sample size

A priori analysis of sample size was conducted using 
G*Power Version 3.1.9.4 software. Considering two groups 
and two repeated assessments, an effect size of 0.6, a type 
I error probability of 0.05, and a power effect of 0.80, the 
minimum required group size was 24 PwMS, accounting for 
dropouts (10%).

Data Collection

To ensure high-quality data, raters underwent specialized 
training to administer clinical outcome measures and conduct 
kinematic assessments. IMUs were securely attached to rele-
vant body segments with Velcro straps to minimize oscillations 

and reduce motion artifacts. Two physiotherapists experienced 
in gait analysis with IMUs conducted the instrumental assess-
ment and remained close to each participant during tests to 
prevent falls and ensure proper execution.

IMU-derived indices were measured as participants walked 
at their preferred gait speed along a 10-meter path, with an 
additional 2 meters at each end for turning, resulting in a total 
walking distance of 14 meters. (Fig. 1). Each task was per-
formed three times, of which the mean value between trials 
was subsequently calculated and used for the statistical anal-
ysis. Data were collected at baseline (T0) and after 4 weeks of 
training (T1). 

Participants were equipped with five synchronized IMUs 
(128 Hz, Opal, APDM, Portland, OR, USA), which acquired 
samples of three-dimensional linear accelerations and angu-
lar velocities. IMUs were located on the occipital cranium 
bone, near the lambdoid suture of the head (H), at the cen-
ter of the sternum (S). For calculating the LDLJa, data from 
a single IMU placed at the L4/L5 level, just above the pelvis 
(P), was utilized. To segment steps and strides, data from the 
IMUs positioned on each lower leg, just above the lateral mal-
leoli, were considered (33). During the initial static phase of 
each trial, a reference system aligned with the gravity vector 
was obtained. The time-invariant rotational matrix between 
each IMU and the defined reference system was computed 
and applied to the dynamic phase of the trials. As a result, 
accelerometer and gyroscope data were represented in a 
reference system roughly aligned with the antero-posterior 
(AP), medio-lateral (ML), and cranio-caudal (CC) anatomical 
axes. This method removed the acceleration due to grav-
ity from the CC component of the accelerometer data (34). 
The accelerometer and gyroscope data were filtered using a  
second-order Butterworth low-pass filter with cutoff fre-
quencies of 10 Hz and 6 Hz, respectively. Data were processed 
in the MATLAB® environment (MATLAB R2022b, MathWorks) 
for the computation of the LDLJa. 

FIGURE 1 - Data collection 
procedure. IMU-derived indi-
ces recorded as participants 
walked at their gait speed 
along a 10-meter straight path, 
with an additional 2 meters  
at each end for turning, resul-
ting in a total walking distance 
of 14 meters.
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The LDLJ was calculated at the pelvis level from the linear 
acceleration signals for each spatial direction according to 
the following formula (15): 
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where a(t) represents the time – domain acceleration of 
a movement, a normalization factor based on the peak of 
the acceleration profile apeak, and t1, t2 are the start and stop 
times of the movement, respectively.

Interventions 

The enrolled patients underwent 12 individual sessions 
of either conventional or cognitive-motor training, sched-
uled 3 days per week over a period of 4 weeks. Each session 
lasted 50 minutes. The conventional neuromotor rehabili-
tation program included 30 minutes of muscle stretching, 
active-assisted mobilizations, neuromuscular facilitation, 
gait training, and balance exercises using swinging plat-
forms. Additionally, 20 minutes of dynamic postural stability 
training involved marching on unstable surfaces and walking 
on the treadmill with both open and closed eyes. For the 
cognitive-motor intervention, 20 minutes of treatment was 
incorporated into the conventional therapy. This involved a 
dual-task paradigm where each patient was instructed to 
walk continuously and respond to auditory stimuli by turn-
ing their head toward the sound and identifying a visual 
target. This dual task was performed while marching on an 
unstable surface and walking on the treadmill at varying 
velocities (23). The interventions were performed by phys-
iotherapists not involved in the assessment.

Data analysis

After verifying the normality of the distributions through 
the Shapiro – Wilk test an independent sample t-test was 
used to identify significant differences between PwMS and 
HP at T0, and a paired samples t-test or Wilcoxon test was 
used to identify significant changes a T1, as well as Cohen’s 
d with Hedge’s correction was calculated to assess effect 
size. 

Changes in gait variables and MiniBesTest scores at T1 
were expressed as delta (∆) values according to the following 
formula:

Δ = (T1 – T0)/T0 *100

Partial Spearman’s correlation coefficient (ρ) accounting 
for tied scores and excluding the effects of EDSS values and 
gait speed were calculated to assess the correlation between 
the LDLJa and MiniBesTest at T0 as well as between the 
improvements in LDLJa and MiniBesTest.

Two logistic regression models were trained to predict 
binary outcomes using LDLJa scores at T0 and ΔLDLJa levels 
as the predictor variable with the following aims: i) to assess 
the ability of LDLJa to characterize the gait abnormalities of 

PwMS at T0 compared with HP as well as determining the 
related optimal cutoff value to characterize lower trunk 
smoothness abnormalities; ii) to assess the external respon-
siveness of LDLJa by using an improvement in MiniBesTest 
based on scores > 4 at T1 as anchor in PwMS who reported 
LDLJa abnormal values at T0.

To optimize and assess model performance, stratified 
k-fold cross-validation was implemented. This method 
ensured that the proportion of the two classes was main-
tained within each fold (35). For each iteration of cross- 
validation, the sample was partitioned into 5 folds. In each 
iteration, one fold was used as the validation set, and the 
remaining k-1 folds were used to train the model. Each 
sample was used once in the validation set and k-1 times 
in the training set across the k iterations. Therefore, a sub-
ject included in the validation fold in any given iteration was 
not included in the training folds during that same iteration 
(36). As a result, in the first model, the cross-validation pro-
cedure included 69 participants in the training sets and 17 
participants in the validation sets for each iteration. The 
second model used 34 pwMS for training and 10 pwMS for 
validating each iteration. 

To address the class imbalance between pwMS and HP, 
as well as between improved and non-improved PwMS, the 
Synthetic Minority Over-sampling Technique (SMOTE) was 
applied exclusively to the training data in each fold (6,37). 
Receiver Operating Characteristic (ROC) curves were plot-
ted for each fold, and bootstrapping was used to estimate 
the 95% confidence intervals (38). The optimal cut-off point 
(OCP) for classifying PwMS from HP, as well as the MCID 
score reflecting an improvement ≥ 4 in the MiniBEsTest 
score (29), were determined as the values that maximized 
the sum of sensitivity and specificity. After cross-validation, 
the OCPs and MCIDs obtained from the training fold were 
then applied to the validation fold set to evaluate the mod-
el’s performance on unseen data. Sensitivity (Se), specific-
ity (Sp), AUC, F1 score, precision, and positive and negative 
likelihood ratios (LR+ and LR-, respectively), were calculated 
for both the training and validation sets within each fold 
and for the test set at the optimal thresholds. Likelihood 
ratios were transformed into positive and negative likeli-
hood ratios (PTP+ and PTP-, respectively) through a Fagan’s 
nomogram. The performance metrics were averaged across 
all folds to provide an overall assessment of the model 
(39). Additionally, the final optimal threshold was calcu-
lated as the mean of the optimal thresholds determined in  
each fold. 

Results
IMU-measures were obtained from forty-four PwMS. 

Twenty-one participants were allocated to the conventional 
group, and 23 to the cognitive-motor group. The two groups 
were homogeneous with respect to demographic and 
anthropometric characteristics, and clinical status. Clinical 
and demographic characteristics of the 44 participants are 
described in Table 1. Two participants of the cognitive- 
motor group dropped out for reasons not related to the 
study, and data from 21 participants for each group were 
analyzed at T1.
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TABLE 1 - Sample characteristics

 PwMS  
(n = 44)

HP (n = 43)

Disease duration, years 
[mean (SD)]

12.93 (9.73)  

EDSS [mean (SD)] 4.19 (1.58)

MiniBesTest [mean (SD)] T0 18.73 (6.75)

T1 20.78 (6.06)

Age, years [mean (SD)] 49.76 (11.08) 57.57 (10.69)

Sex [n (%)] F 12 (30 %) 17 (39.53 %)

M 28 (70 %) 26 (60.46 %)

Gait speed (m/s) T0 0.94 (0.37) 1.06 (0.23)

T1 1.10 (0.39)

LDLJaAP [mean (SD)] T0 –5.22 (0.39)  –4.92 (0.46)

T1 –5.17 (0.33)

LDLJaML [mean (SD)] T0 –5.48 (0.31) –5.21 (0.24)

T1 –5.29 (0.28)

LDLJaCC [mean (SD)] T0 –5.06 (0.43) –5.02 (0.38)

T1 –5.02 (0.33)

PwMS, people with multiple sclerosis; HP, age and gait speed – matched 
healthy participants; EDSS, expanded disability status scale; SD, standard 
deviation; T0, assessment at baseline; T1, assessment following the reha-
bilitation period; LDLJa, log-dimensionless jerk score of acceleration signals; 
AP, antero-posterior direction of the acceleration signal; ML, medio-lateral 
direction of the acceleration signal; CC, cranio – caudal direction of the ac-
celeration signal.

Ability to characterize gait smoothness differences of PwMS 
compared with HP

Significant differences between PwMS and HP were 
found in LDLJaAP (p < 0.001, d = 0.63), LDLJaML (p < 0.001; 
d = 1.08), and LDLJaCC (p = 0.03, d = 0.68). LDLJaAP and 
LDLJaML showed sufficient – to – moderate ability to iden-
tify the gait smoothness differences of PwMS compared with 
HP (Table 2). Lower LDLJaAP than –4.88 and lower LDLJaML 
values than –5.40 characterize PwMS with about 63% and 
76% probability, respectively. The mean ROC curves, along 
with the confidence intervals and individual fold ROC curves, 
are shown in Fig. 2. The performance metrics are reported 
in Table 2. LDLJaCC did not reveal satisfactory discriminative 
ability, as shown by the AUC values around 0.50. Therefore, 
performance metrics and cutoff analysis were not conducted. 

LDLJaML correlated with MiniBesTest values at T0, regard-
less of EDSS and gait speed values (ρ = 0.35, p = 0.03). LDLJaAP 
(ρ = 0.23, p = 0.10) and LDLJaCC ((ρ = 0.03, p = 0.79) did not 
reveal a significant correlation with MiniBesTest values. 

Responsiveness findings

Significant differences between T0 and T1 were found in 
LDLJaML (Fig. 3) and MiniBesTest (p < 0.001; d = 0.68), with 
LDLJaML values approaching HP values at T1. No signifi-
cant differences between T0 and T1 were found in LDLJaAP 
(p = 0.44, d = 0.12). ΔLDLJaML correlated with ΔMiniBesTest 
(ρ = 0.54, p < 0.00). Fifteen individuals (26%) improved their 
MiniBesTest scores ≥ 4 points after rehabilitation. ΔLDLJaML 
showed good external responsiveness to rehabilitation (AUC = 
around 0.80, Fig. 4) with improvements >4.02 % represent-
ing the optimal MCID to reflect a clinical improvement in 
MiniBesTest, as reported in Table 3.

TABLE 2 - Performance metrics of LDLJaAP and LDLJaML in classifying PwMS and HP

 AUC (95% CI) OCP Se (95% CI) Sp (95% CI) F1 score (95% CI) LR+ (95% CI) LR-(95% CI) PTP+ PTP-

LDLJaAP

Training 
folds

0.67  
(0.64–0.69)

 –4.88

0.87  
(0.79–0.95)

0.49  
(0.43–0.56)

0.73  
(0.71–0.76)

1.73  
(1.66–1.81)

0.25  
(0.15–0.34) 63% 20%

Validation 
folds

0.67  
(0.56–0.78)

0.86  
(0.73–0.98)

0.37  
(0.24–0.51)

0.68  
(0.62–0.74)

1.40  
(1.26–1.54)

0.41  
(0.26–0.52) 58% 29%

LDLJaML

Training 
folds

0.74  
(0.70–0.78)

–5.40

0.65  
(0.55–0.76)

0.75  
(0.63–0.89)

0.69  
(0.65–0.72)

3.20  
(2.20–4.75)

0.46  
(0.42–0.50) 76% 32%

Validation 
folds

0.73  
(0.54–0.91)

0.53  
(0.23–0.84)

0.74  
(0.41–0.99)

0.56  
(0.32–0.81)

2.17  
(1.47–3.05)

0.67  
(0.55–0.82) 68% 40%

LDLJaCC

Training 
folds

0.50  
(0.42–0.58)

 n.a  n.a  n.a  n.a  n.a  n.a  n.a  n.a
Validation 
folds

0.39  
(0.22–0.55)

AUC,area under the receiver operating characteristics curve; OCP, optimal cutoff point; Se, sensitivity; Sp, specificity; CI, confidence intervals; LR+, positive likeli-
hood ratio; LR-, negative likelihood ratio; PTP+, positive post- test probability; PTP-, negative post – test probability; n.a., cutoff analysis not applicable because 
of the insufficient discriminative ability.
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FIGURE 2 - ROC curves for trai-
ning (a) and validation (b) folds 
of LDLJaAP, and for training 
(c) and validation (d) folds of 
LDLJaML. 

FIGURE 3 - Improvements in 
LDLJaML between T0 and T1. 

http://www.archivesofphysiotherapy.com


Castiglia et al Arch Physioter 2025; 15: 15

© 2025 The Authors. Published by AboutScience - www.aboutscience.eu

Discussion
The purpose of this study was to investigate the ability 

of the LDLJa to characterize gait differences in PwMS com-
pared to HP, regardless of age or gait speed, and to assess 
its responsiveness to rehabilitation in terms of its ability to 
detect clinically meaningful improvements in movement 
smoothness following rehabilitation. We found significant 
differences in LDLJa values in the three anatomical directions 
(antero-posterior, medio-lateral and cranio-caudal) between 
PwMS and HP, regardless of age and gait speed, with lower 
LDLJa values indicating gait smoothness reductions in PwMS 
(Table 2). However, only LDLJaAP and LDLJaML showed  
sufficient – to – moderate ability to characterize the gait 
abnormalities of PwMS, as resulted from AUCs nearing 0.70. 
The OCP for classifying PwMS was found to be less than -4.88 
for the AP direction and -5.40 for the ML direction, with a 
probability to correctly identify persons with MS at the OCP 
of around 63% to 76%, respectively. These cutoff values dis-
criminate well also in unknown samples, as confirmed by 
the results in the validation folds set in the cross-validation 
model, thus increasing the external validity of the results 
(Table 2). Performance metrics were consistent across the 
training and validation samples, thus confirming the robust-
ness of the model. As a result, LDLJaAP and LDLJaML can be 
considered as accurate metrics for identifying gait abnormal-
ities in PwMS, consistent with previous studies highlighting 
the importance of gait smoothness in this population also in 
the early stages of the disease (16). Furthermore, LDLJaML 
positively correlated with MiniBesTest scores, with higher 
smoothness in medio–lateral direction reflecting higher 
dynamic postural control. Overall, these results highlight that 

FIGURE 4 - Responsiveness of 
ΔLDLJaML.

TABLE 3 - Performance metrics for responsiveness of ΔLDLJaML in reflecting clinical improvement

AUC  
(95% CI) MCID

Se 
(95% CI)

Sp 
(95% CI)

F1 score 
(95% CI)

LR+ 
(95% CI)

LR- 
(95% CI)

PTP+  
(95% CI)

PTP-  
(95% CI)

Training 
folds

0.84  
(0.81–0.87)

> 4.02%

0.95  
(0.87–0.99)

0.74  
(0.87–0.99)

0.86  
(0.81 – 0.90)

3.76  
(3.34 – 4.26)

0.07  
(0.01–0.14)

57%  
(54%–60%)

2%  
(0%–5%)

Validation 
folds

0.83  
(0.70–0.96)

0.80 
(0.60–0.99)

0.65  
(0.49–0.87)

0.55  
(0.14 – 0.96)

3.16  
(1.12–5.60)

0.30  
(0.00–0.90)

53%  
(28%–66%)

10%  
(0%–24%)

PwMS experience an abruption of trunk smoothness during 
gait, and that lower smoothness in medio–lateral direction 
correlates with balance issues. This is consistent with the 
reported increased ML sway in the PwMS group, reflecting 
a reduced ability to control side-to-side motion when com-
pared to controlling antero-posterior sway (40-42). 

Nevertheless, only LDLJaML showed significant improve-
ments following rehabilitation, and ΔLDLJaML moderately 
correlated with ΔMini-BESTest (ρ = 0.54). A greater improve-
ment than 4.02% in LDLJaML was identified as the MCID for 
reflecting clinically meaningful improvements in smoothness. 
The AUC for responsiveness was approximately 0.80, reinforc-
ing the utility of LDLJaML as a responsive measure for track-
ing rehabilitation outcomes, with consistent results between 
training and test performance metrics. Conversely, Gulde and 
colleagues (43) reported gait speed, but not smoothness to 
change following rehabilitation in a similar PwMS sample. 
However, the discrepancies in smoothness results can rely 
on the different metrics used for quantifying gait smooth-
ness, namely the spectral arc length and the signal–to–noise 
ratio instead of LDLJ, which better discriminates smoothness 
of gait compared with other metrics (24). Moreover, Gulde 
and colleagues employed the 10- and 6-minute walking 
tests, instructing participants to walk at their maximal gait 
speed, which complicates the comparison with our results. 
Noteworthy, participants in the study by Gulde and colleagues 
(44) underwent a scheduled multidisciplinary rehabilitation 
treatment, whereas, in our study, PwMS performed a rehabil-
itation program specifically focused on dynamic postural sta-
bility, which could partially explain the contradictory results 
between the two studies. Smoothness during comfortable 
and fast walking speeds may engage distinct neuromuscular 
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strategies. Comfortable walking prioritizes efficiency and bal-
ance, which aligns with improvements captured by the Mini-
BEST, a tool focused on dynamic balance. In contrast, fast 
walking emphasizes propulsion and endurance, potentially 
overshadowing improvements in smoothness. While the 
10-meter walk test provides a snapshot of walking patterns 
over short distances relevant to daily activities (45,46), it may 
not fully encompass the broader ecological context of com-
munity ambulation, particularly in populations with greater 
disability levels (e.g., EDSS > 4). Tests like the 2-minute or 
6-minute walk test are better suited for evaluating endurance 
and community mobility. Future studies could integrate lon-
ger walking tests to better capture endurance-related param-
eters and their interaction with smoothness in a broader 
ecological context. The findings of our study have significant 
clinical implications. The established MCID for LDLJaML pro-
vides clinicians with a quantifiable target for rehabilitation 
interventions aimed at improving gait smoothness in PwMS. 
Anchoring the Mini-BESTest, a widely used clinical scale for 
balance assessment, bridges the gap between quantitative 
gait analysis and clinical practice. This enhances the inter-
pretability and clinical relevance of LDLJaML, facilitating its 
integration into routine clinical assessments and personal-
ized rehabilitation programs. To our knowledge, no clinical 
scales specifically assess gait smoothness, a dynamic motor 
ability reflecting the efficiency of neuromuscular control 
during movement. The Mini-BEST was chosen as an anchor 
due to its focus on dynamic balance, which shares underly-
ing mechanisms with smoothness, such as postural control 
and motor coordination. However, this approach has limita-
tions, as the Mini-BEST primarily evaluates dynamic balance. 
Furthermore, the robustness of our findings is supported by 
the applied statistical procedure, including the use of strati-
fied k-fold cross-validation and data balancing techniques to 
address class imbalance (6). The consistency of performance 
metrics across training and test sets indicates the reliability 
and generalizability of our logistic regression models, thus 
supporting the external validity of the results. The relatively 
small sample size led to an undersized test set, which con-
tributed to some variability in the validation fold results. 
Nevertheless, the consistency of performance metrics across 
training and validation sets supports the reliability and gen-
eralizability of our logistic regression models, reinforcing the 
external validity of the findings. To further validate and refine 
the MCID thresholds for gait smoothness, larger pragmatic 
multicenter studies are needed (14). Despite the promising 
results, the following limitations should be considered. The 
sample size, though adequate for initial validation, limits the 
generalizability of the findings. Furthermore, although the 
abnormal gait pattern in PwMS is independent of the disease 
phenotype (47), this study did not account for heterogeneity 
in the sample’s walking ability, as well as MS subtypes and 
impairment levels. 

Additionally, the study focused on a specific cohort of 
PwMS undergoing a new dynamic rehabilitative approach, 
which may not reflect conventional treatments. Future 
research should explore the longitudinal stability of LDLJaML 
measurements and their predictive value for long-term 
clinical outcomes. Integrating additional sensor-based gait 

parameters could provide a more comprehensive assessment 
of gait abnormalities and their response to rehabilitation. 
Moreover, utilizing multiple inertial sensors can enhance the 
collection of kinematic data, offering a more detailed analysis 
of movement patterns.

Conclusions
Lower LDLJa values in the AP and ML directions character-

ize the impairment in smoothness of gait in PwMS, compared 
to HP, regardless of age and gait speed. These differences 
indicate reduced smoothness, which is associated with com-
promised balance control. Furthermore, LDLJa in the medio–
lateral direction can be considered as a responsive metric to 
balance–focused rehabilitation interventions, thus highlight-
ing the potential of LDLJa to serve as a reliable and respon-
sive measure for characterizing gait disorders and tracking 
rehabilitation progress in PwMS. These insights contribute 
to the development of targeted, data-driven rehabilitation 
strategies aimed at enhancing balance and gait in PwMS.

Disclosures
Conflict of interest: The authors declare no conflict of interest.

Financial support: This research received no external fundings.

Author’s contributors role: Conceptualization: MT, SFC, FDF. Meth-
odology: MT, SFC, FDF. Data curation: SFC, DT, MS, MT. Formal anal-
ysis: SFC, DT, MS, MT. Investigation: SFC, FDF, MT. Writing-original 
draft: SFC, FDF, MT. Writing-review and editing: all the authors. Su-
pervision: AT, EB, MT.

Data availability statement: The data presented in this study are 
available upon reasonable request to the corresponding author.

References
1. Comber L, Galvin R, Coote S. Gait deficits in people with mul-

tiple sclerosis: A systematic review and meta-analysis. Gait 
Posture. 2017;51:25-35. CrossRef PubMed

2. Gunn H, Creanor S, Haas B, Marsden J, Freeman J. Risk fac-
tors for falls in multiple sclerosis: an observational study. Mult 
Scler. 2013;19(14):1913-1922. CrossRef PubMed

3. Galperin I, Mirelman A, Schmitz-Hübsch T, et al. Treadmill  
training with virtual reality to enhance gait and cognitive 
function among people with multiple sclerosis: a randomized 
controlled trial. J Neurol. 2023;270(3):1388-1401. CrossRef 
PubMed

4. Corrini C, Gervasoni E, Perini G, et al. Mobility and balance 
rehabilitation in multiple sclerosis: A systematic review and 
dose-response meta-analysis. Mult Scler Relat Disord. 2023; 
69:104424. CrossRef PubMed

5. Gordt K, Gerhardy T, Najafi B, Schwenk M. Effects of Wearable 
Sensor-Based Balance and Gait Training on Balance, Gait, and 
Functional Performance in Healthy and Patient Populations: A 
Systematic Review and Meta-Analysis of Randomized Controlled 
Trials. Gerontology. 2018;64(1):74-89. CrossRef PubMed

6. Trabassi D, Castiglia SF, Bini F, et al. Optimizing Rare Disease 
Gait Classification through Data Balancing and Generative AI: 
Insights from Hereditary Cerebellar Ataxia. Sensors (Basel). 
2024;24(11):3613. CrossRef

7. Belluscio V, Bergamini E, Tramontano M, et al. Gait Quality 
Assessment in Survivors from Severe Traumatic Brain Injury: 
An Instrumented Approach Based on Inertial Sensors. Sensors 

http://www.archivesofphysiotherapy.com
https://doi.org/10.1016/j.gaitpost.2016.09.026
https://pubmed.ncbi.nlm.nih.gov/27693958
https://doi.org/10.1177/1352458513488233
https://pubmed.ncbi.nlm.nih.gov/23633067
https://doi.org/10.1007/s00415-022-11469-1
https://pubmed.ncbi.nlm.nih.gov/36357586
https://doi.org/10.1016/j.msard.2022.104424
https://pubmed.ncbi.nlm.nih.gov/36473240
https://doi.org/10.1159/000481454
https://pubmed.ncbi.nlm.nih.gov/29130977
https://doi.org/10.3390/s24113613


Castiglia et al Arch Physioter 2025; 15: 17

© 2025 The Authors. Published by AboutScience - www.aboutscience.eu

(Basel). 2019;19(23):5315. CrossRef PubMed
8. Tramontano M, Orejel Bustos AS, Montemurro R, et al. Dynamic 

Stability, Symmetry, and Smoothness of Gait in People with 
Neurological Health Conditions. Sensors (Basel). 2024;24(8): 
2451. CrossRef PubMed

9. Buckley C, Galna B, Rochester L, Mazzà C. Upper body accelera-
tions as a biomarker of gait impairment in the early stages of 
Parkinson’s disease. Gait Posture. 2019;71:289-295. CrossRef 
PubMed

10. Castiglia SF, Trabassi D, Tatarelli A, et al. Identification of 
Gait Unbalance and Fallers Among Subjects with Cerebellar 
Ataxia by a Set of Trunk Acceleration-Derived Indices of Gait. 
Cerebellum. 2023;22(1):46-58. CrossRef PubMed

11. Castiglia SF, Tatarelli A, Trabassi D, et al. Ability of a Set of 
Trunk Inertial Indexes of Gait to Identify Gait Instability and 
Recurrent Fallers in Parkinson’s Disease. Sensors (Basel). 2021; 
21(10):3449. CrossRef

12. Tramontano M, Manzari L, Bustos ASO, et al. Instrumental 
assessment of dynamic postural stability in patients with uni-
lateral vestibular hypofunction during straight, curved, and 
blindfolded gait. Eur Arch Otorhinolaryngol. 2024;281(1):83-94. 
CrossRef PubMed

13. Spain RI, St George RJ, Salarian A, et al. Body-worn motion 
sensors detect balance and gait deficits in people with mul-
tiple sclerosis who have normal walking speed. Gait Posture. 
2012;35(4):573-578. CrossRef PubMed

14. Angelini L, Carpinella I, Cattaneo D, et al. Is a Wearable Sensor-
Based Characterisation of Gait Robust Enough to Overcome 
Differences Between Measurement Protocols? A Multi-Centric 
Pragmatic Study in Patients with Multiple Sclerosis. Sensors 
(Basel). 2019;20(1):79. CrossRef

15. Melendez-Calderon A, Shirota C, Balasubramanian S. Estimating 
Movement Smoothness From Inertial Measurement Units. 
Front Bioeng Biotechnol. 2021;8:558771. CrossRef

16. Pau M, Mandaresu S, Pilloni G, et al. Smoothness of gait 
detects early alterations of walking in persons with multiple 
sclerosis without disability. Gait Posture. 2017;58:307-309. 
CrossRef PubMed

17. Tramontano M, Belluscio V, Bergamini E, et al. Vestibular 
Rehabilitation Improves Gait Quality and Activities of Daily Living 
in People with Severe Traumatic Brain Injury: A Randomized 
Clinical Trial. Sensors (Basel). 2022;22(21):8553. CrossRef

18. Germanotta M, Iacovelli C, Aprile I. Evaluation of Gait 
Smoothness in Patients with Stroke Undergoing Rehabilitation: 
Comparison between Two Metrics. Int J Environ Res Public 
Health. 2022;19(20):13440. CrossRef

19. Miller HL, Templin TN, Fears NE, Sherrod GM, Patterson RM, 
Bugnariu NL. Movement smoothness during dynamic postural 
control to a static target differs between autistic and neurotyp-
ical children. Gait Posture. 2023;99:76-82. CrossRef PubMed

20. Dixon PC, Stirling L, Xu X, Chang CC, Dennerlein JT, Schiffman JM. 
Aging may negatively impact movement smoothness during stair 
negotiation. Hum Mov Sci. 2018;60:78-86. CrossRef PubMed

21. Suri A, Rosso AL, VanSwearingen J, et al. Mobility of Older 
Adults: Gait Quality Measures Are Associated With Life-Space 
Assessment Scores. J Gerontol A Biol Sci Med Sci. 2021;76(10): 
e299-e306. CrossRef PubMed

22. Garcia FDV, da Cunha MJ, Schuch CP, Schifino GP, Balbinot G, 
Pagnussat AS. Movement smoothness in chronic post-stroke 
individuals walking in an outdoor environment – A cross-
sectional study using IMU sensors. PLoS One. 2021;16(4): 
e0250100. CrossRef PubMed

23. Tramontano M, Argento O, Orejel Bustos AS, et al. Cognitive-
motor dual-task training improves dynamic stability during 
straight and curved gait in patients with multiple sclerosis: 

a randomized controlled trial. Eur J Phys Rehabil Med. 2024; 
60(1):27-36. CrossRef PubMed

24. Antonelli M, Caselli E, Gastaldi L. Comparison of Gait 
Smoothness Metrics in Healthy Elderly and Young People. Appl 
Sci (Basel). 2024;14(2):911. CrossRef

25. Husted JA, Cook RJ, Farewell VT, Gladman DD. Methods for 
assessing responsiveness: a critical review and recommenda-
tions. J Clin Epidemiol. 2000;53(5):459-468. CrossRef PubMed

26. Crosby RD, Kolotkin RL, Williams GR. Defining clinically mean-
ingful change in health-related quality of life. J Clin Epidemiol. 
2003;56(5):395-407. CrossRef PubMed

27. Baert I, Freeman J, Smedal T, et al. Responsiveness and clini-
cally meaningful improvement, according to disability level, of 
five walking measures after rehabilitation in multiple sclero-
sis: a European multicenter study. Neurorehabil Neural Repair. 
2014;28(7):621-631. CrossRef PubMed

28. Kurtzke JF. Rating neurologic impairment in multiple sclero-
sis: an expanded disability status scale (EDSS). Neurology. 
1983;33(11):1444-1452. CrossRef PubMed

29. Franchignoni F, Horak F, Godi M, Nardone A, Giordano A. Using 
psychometric techniques to improve the Balance Evaluation 
Systems Test: the mini-BESTest. J Rehabil Med. 2010;42(4): 
323-331. CrossRef PubMed

30. Godi M, Franchignoni F, Caligari M, Giordano A, Turcato 
AM, Nardone A. Comparison of reliability, validity, and 
responsiveness of the mini-BESTest and Berg Balance Scale 
in patients with balance disorders. Phys Ther. 2013;93(2): 
158-167. CrossRef PubMed

31. Yao XI, Wang X, Speicher PJ, et al. Reporting and Guidelines in 
Propensity Score Analysis: A Systematic Review of Cancer and 
Cancer Surgical Studies. J Natl Cancer Inst. 2017;109(8):djw323. 
CrossRef PubMed

32. Huijben B, van Schooten KS, van Dieën JH, Pijnappels M. The 
effect of walking speed on quality of gait in older adults. Gait 
Posture. 2018;65:112-116. CrossRef PubMed

33. Lowry KA, Vanswearingen JM, Perera S, Studenski SA, Brach JS. 
Walking smoothness is associated with self-reported function 
after accounting for gait speed. J Gerontol A Biol Sci Med Sci. 
2013;68(10):1286-1290. CrossRef PubMed

34. Trojaniello D, Cereatti A, Pelosin E, et al. Estimation of step-by-
step spatio-temporal parameters of normal and impaired gait 
using shank-mounted magneto-inertial sensors: application to 
elderly, hemiparetic, parkinsonian and choreic gait. J Neuroeng 
Rehabil. 2014;11:152. CrossRef

35. Bergamini E, Ligorio G, Summa A, Vannozzi G, Cappozzo A, 
Sabatini AM. Estimating orientation using magnetic and iner-
tial sensors and different sensor fusion approaches: accuracy 
assessment in manual and locomotion tasks. Sensors (Basel). 
2014;14(10):18625-18649. CrossRef

36. Jiang D, Huang J, Zhang Y. The cross-validated AUC for MCP-
logistic regression with high-dimensional data. Stat Methods 
Med Res. 2013;22(5):505-518. CrossRef PubMed

37. Eertink JJ, Heymans MW, Zwezerijnen GJC, Zijlstra JM, de Vet 
HCW, Boellaard R. External validation: a simulation study to 
compare cross-validation versus holdout or external testing 
to assess the performance of clinical prediction models using 
PET data from DLBCL patients. EJNMMI Res. 2022;12(1):58. 
CrossRef

38. Szeghalmy S, Fazekas A. A Comparative Study of the Use of 
Stratified Cross-Validation and Distribution-Balanced Stratified 
Cross-Validation in Imbalanced Learning. Sensors (Basel). 
2023;23(4):2333. CrossRef

39. Kohavi R. A study of cross-validation and bootstrap for accu-
racy estimation and model selection; Proceedings of the 
14th International Joint Conference on Artificial Intelligence 

https://doi.org/10.3390/s19235315
https://pubmed.ncbi.nlm.nih.gov/31816843
https://doi.org/10.3390/s24082451
https://pubmed.ncbi.nlm.nih.gov/38676068
https://doi.org/10.1016/j.gaitpost.2018.06.166
https://pubmed.ncbi.nlm.nih.gov/30139646
https://doi.org/10.1007/s12311-021-01361-5
https://pubmed.ncbi.nlm.nih.gov/35079958
https://doi.org/10.3390/s21103449
https://doi.org/10.1007/s00405-023-08082-x
https://pubmed.ncbi.nlm.nih.gov/37382626
https://doi.org/10.1016/j.gaitpost.2011.11.026
https://pubmed.ncbi.nlm.nih.gov/22277368
https://doi.org/10.3390/s20010079
https://doi.org/10.3389/fbioe.2020.558771
https://doi.org/10.1016/j.gaitpost.2017.08.023
https://pubmed.ncbi.nlm.nih.gov/28858779
https://doi.org/10.3390/s22218553
https://doi.org/10.3390/ijerph192013440
https://doi.org/10.1016/j.gaitpost.2022.10.015
https://pubmed.ncbi.nlm.nih.gov/36335658
https://doi.org/10.1016/j.humov.2018.05.008
https://pubmed.ncbi.nlm.nih.gov/29843055
https://doi.org/10.1093/gerona/glab151
https://pubmed.ncbi.nlm.nih.gov/34038537
https://doi.org/10.1371/journal.pone.0250100
https://pubmed.ncbi.nlm.nih.gov/33886640/
https://doi.org/10.23736/S1973-9087.23.08156-X
https://pubmed.ncbi.nlm.nih.gov/37997324
https://doi.org/10.3390/app14020911
https://doi.org/10.1016/S0895-4356(99)00206-1
https://pubmed.ncbi.nlm.nih.gov/10812317
https://doi.org/10.1016/S0895-4356(03)00044-1
https://pubmed.ncbi.nlm.nih.gov/12812812
https://doi.org/10.1177/1545968314521010
https://pubmed.ncbi.nlm.nih.gov/24503204
https://doi.org/10.1212/WNL.33.11.1444
https://pubmed.ncbi.nlm.nih.gov/6685237
https://doi.org/10.2340/16501977-0537
https://pubmed.ncbi.nlm.nih.gov/20461334
https://doi.org/10.2522/ptj.20120171
https://pubmed.ncbi.nlm.nih.gov/23023812
https://doi.org/10.1093/jnci/djw323
https://pubmed.ncbi.nlm.nih.gov/28376195
https://doi.org/10.1016/j.gaitpost.2018.07.004
https://pubmed.ncbi.nlm.nih.gov/30558916
https://doi.org/10.1093/gerona/glt034
https://pubmed.ncbi.nlm.nih.gov/23689828
https://doi.org/10.1186/1743-0003-11-152
https://doi.org/10.3390/s141018625
https://doi.org/10.1177/0962280211428385
https://pubmed.ncbi.nlm.nih.gov/22127580
https://doi.org/10.1186/s13550-022-00931-w
https://doi.org/10.3390/s23042333


Clinimetric properties of smoothness index of gait in Multiple Sclerosis18 

© 2025 The Authors. Arch Physioter - ISSN 2057-0082 - www.archivesofphysiotherapy.com

(IJCAI’95); Montreal, QC, Canada. 20–25 August 1995; pp. 1137-
1145. CrossRef

40. Forman G, Scholz M. Apples-to-apples in cross-validation stud-
ies: pitfalls in classifier performance measurement. SIGKDD 
Explor. 2010;12(1):49-57. CrossRef

41. Morrison S, Rynders CA, Sosnoff JJ. Deficits in medio-lateral 
balance control and the implications for falls in individuals with 
multiple sclerosis. Gait Posture. 2016;49:148-154. CrossRef 
PubMed

42. Comber L, Sosnoff JJ, Galvin R, Coote S. Postural control deficits 
in people with Multiple Sclerosis: A systematic review and meta-
analysis. Gait Posture. 2018;61:445-452. CrossRef PubMed

43. Lencioni T, Anastasi D, Carpinella I, et al. Strategies for main-
taining dynamic balance in persons with neurological dis-
orders during overground walking. Proc Inst Mech Eng H. 
2021;235(9):1079-1087. CrossRef PubMed

44. Gulde P, Hermsdörfer J, Rieckmann P. Speed but Not 
Smoothness of Gait Reacts to Rehabilitation in Multiple 
Sclerosis. Mult Scler Int. 2021;2021:5589562. Published 2021 
Jun 3. CrossRef

45. Paltamaa J, Sarasoja T, Leskinen E, Wikström J, Mälkiä E. 
Measures of physical functioning predict self-reported per-
formance in self-care, mobility, and domestic life in ambula-
tory persons with multiple sclerosis. Arch Phys Med Rehabil. 
2007;88(12):1649-1657. CrossRef PubMed

46. Kieseier, B. C., & Pozzilli, C. Assessing walking disability in multi-
ple sclerosis. Multiple sclerosis 2012 (Houndmills, Basingstoke, 
England), 18(7), 914-924. CrossRef

47. Dujmovic I, Radovanovic S, Martinovic V, et al. Gait pattern 
in patients with different multiple sclerosis phenotypes. Mult 
Scler Relat Disord. 2017;13:13-20. CrossRef PubMed

http://www.archivesofphysiotherapy.com
https://dl.acm.org/doi/10.5555/1643031.1643047
https://doi.org/10.1145/1882471.1882479
https://doi.org/10.1016/j.gaitpost.2016.06.036
https://pubmed.ncbi.nlm.nih.gov/27423077
https://doi.org/10.1016/j.gaitpost.2018.02.018
https://pubmed.ncbi.nlm.nih.gov/29486362
https://doi.org/10.1177/09544119211023624
https://pubmed.ncbi.nlm.nih.gov/34112028
https://doi.org/10.1155/2021/5589562
https://doi.org/10.1016/j.apmr.2007.07.032
https://pubmed.ncbi.nlm.nih.gov/18047881
https://doi.org/10.1177/1352458512444498
https://doi.org/10.1016/j.msard.2017.01.012
https://pubmed.ncbi.nlm.nih.gov/28427694

